
Mentofacturing

Vincent Lextrait

vincent@lextrait.com
http://www.mentofacturing.com

January 18, 2014

2

Acknowledgments

The author wishes to thank Denis Arnaud, Christophe Bous-
quet, Dietmar Fauser, Ion Petrescu, David Wales and especially
Edwige Gladwin who have been kind enough to read this doc-
ument, some of them repeated times, and to suggest invaluable
corrections.

Their help does not necessarily constitute an endorsement of
this work.

3

4

Contents

1 From Manufacturing to Mentofacturing 9

1.1 Introduction . 9

1.2 The division of labor originates from manufacturing 12

1.3 The division of labor is a self destructive phase . 18

1.4 Software production and the assembly line 22

1.5 The over sensitivity about salaries 25

1.6 Interpersonal discrepancies of productivity 29

1.7 The explanation 35

1.8 Beyond salary: full analysis of cost 42

1.9 Need for a productivity-friendly organization . . 45

1.9.1 Linear cost related to information exchange 47

1.9.2 Exponential cost related to information ex-
ponential entropy over the assembly line . 50

1.9.3 Fixing linear and exponential costs 54

1.10 From Programmers to Developers 58

1.11 Positive consequences of minimal division of labor 62

1.12 Organization and projects success ratio 64

1.13 In search of the exceptional man 66

1.13.1 Reforming organizations 69

1.13.2 Job protection 70

1.13.3 Retention and career management issues . 72

1.13.4 Elite as a synonym to hacker 74

1.13.5 Anti-intellectualism 75

1.13.6 The moral issue 78

5

CONTENTS

2 Peculiar people for a peculiar world 83
2.1 Donald Ervin Knuth 84

2.1.1 One hexadecimal dollar 84
2.1.2 3.16 or

√
10 91

2.2 Richard Stallman 93
2.3 Peculiar Jokes . 99
2.4 Intellectual, but scientifically minded as well? . . 101
2.5 The ellipse and the circle 105
2.6 Peculiarity, Aesthetics and Culture 109
2.7 Intellectuals and their weaknesses 111

2.7.1 Compiling FORTRAN is impossible . . . 112
2.7.2 No computer can ever play chess 112
2.7.3 We can do anything with COBOL 113
2.7.4 We squeeze everything out of X-Window . 115
2.7.5 Time will come when computers will be

fast enough 117
2.7.6 When one has a hammer, everything looks

like a nail 121
2.8 Technology and Society 123

2.8.1 XML, and the quest for purity 126
2.8.2 Java . 128
2.8.3 User interface development 131

2.9 Elite as a bunch of marginals 134
2.10 Silence and intellectual work 136
2.11 Conclusion . 142

6

List of Figures

1.1 L’Art de l’Épinglier (The Art of the Pin-Maker),
with “division de ce travail” highlighted 14

1.2 A plate showing different types of tools to pro-
duce pins, in Ferchault de Réaumur’s “L’Art de
l’Épinglier”, “The Art of the Pin-Maker” 15

1.3 A plate on different types of wasps, in Ferchault
de Réaumur’s “Mémoires pour servir à l’Histoire
des Insectes” . 16

1.4 Alexey Stakhanov, front, with his team 35
1.5 Compound error ratio as a function of the number

of trades. The lowest curve corresponds to an
individual trade error ratio of 4%, and each of
the subsequent upper curves correspond to 2%
increments. 52

1.6 Compound error ratio as a function of the number
of trades. Surface view. 53

1.7 Project success probability as a function of project
size. Source of data: The Standish Group Inter-
national, Inc. CHAOS 1999 research. 65

2.1 The Art of Computer Programming, volumes 1,
2 and 3. 86

2.2 The first version of the Greek letter delta. 87
2.3 The final version of the Greek letter delta. 87
2.4 One of Knuth $2.56 legendary checks. This one

is for Yates Arthur Keir. 89

7

LIST OF FIGURES

8

Chapter 1

From Manufacturing to
Mentofacturing

We are like dwarfs sitting upon the shoulders of giants.
We are able to see more than the ancients, and farther,

not because of the acuteness of our sight, or our own height,
but because they bring us up and raise us with all their gigantic elevation.

Scholar Bernard de Chartres, circa 1124-1130

1.1 Introduction

In 1968, Douglas Engelbart, before personal computing existed,
was talking about the “intellectual worker”, referring to peo-
ple using a computer “alive for you all day”. In 1970, Alvin
Toffler [56, 57] baptized the post industrial period the “Infor-
mation Age”. In 1991, in the introduction of an article entitled
“Mentofacturing: a vision for American industrial excellence”
[18], Gordon E. Forward, Dennis E. Beach, David A. Gray, and
James Campbell Quick wrote that “Mentofacturing” companies,
focusing on making with the mind rather than making with the
hand, would look more like software companies. In 2001, Peter
Denning and Robert Dunham [14], explained that the informa-
tion technology profession (usually shortened as “IT”) was the

9

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

first profession of the third wave of civilization. Because of all
this, studying the software industry is of paramount importance
to understand the Information Age itself, how people will inter-
act, where the organization of work will find its new rules, and
in which way work and our lives themselves will be redefined.
Indeed, the pioneering software industry in the Information Age
will play the same role as the pin-making factory that Adam
Smith studied at the dawn of the Industrial Age, in 1776 [48],
with the propagation of its new practices to all industries and
to society itself.

Surprisingly enough, after more than half a century, and in
spite of its impact on world economy, or the wealth of nations
to paraphrase Smith, the software industry is still very imper-
fectly understood. No document of the same nature as Adam
Smith’s case study of a pin-making shop exists, and a lot, if not
all knowledge, remains purely empirical. The mechanisms gov-
erning productivity were at the root of Smith’s work, and they
are still the focal point of interest. For instance, experimental
recipes to organize software production in a more efficient man-
ner are regularly proposed. These heuristics work to some level,
but to reach higher and possibly optimal productivity, in the
same fashion as the pin-making activity case study, it is neces-
sary to understand the fundamental laws of software production.
Only then the key factors for productivity can be exploited.

Some specific subjects have been investigated, such as the
influence of office setup on productivity. Tom DeMarco and
Timothy Lister show in ”Peopleware” [13] that the ratio of pro-
ductivity between developers located in regular offices versus
cubicles reaches a factor 2.6 in favor of regular offices. David
Thielen, in 1991 [54], already insisted on individual offices, and
reiterated this in 1999 in his book on Microsoft practices [55].
Individual offices aside, the 2.6 ratio between regular offices ver-
sus cubicles, is already a stunning result. As we’ll see, a lot more
parameters influence far more deeply developers productivity.

Given the ever growing importance of software production
in the industry, its position as the asymptotic and incompress-
ible residue of automation, given the deep impact it has on all

10

1.1. INTRODUCTION

modern human activities, it is striking to note that, in contrast,
nobody has tried to analyze it in depth. The lack of publications
on the subject explains in part the very eclectic nature of this
document’s bibliography.

To a large extent, software production is still based on early
and seminal works on manufacturing industries, which were care-
fully studied by Adam Smith [48], Charles Babbage [3], Karl
Marx [33], Frederick Taylor [52, 53], Alfred Sloan [47], and many
others. Now, who would agree today that Software Production
has anything to do with manufacturing? Certainly nobody.

In spite of that, the organization of people producing soft-
ware is still deeply affected, largely unconsciously, by the same
old principles. Software production is still relying on Adam
Smith’s analysis of the ”Pin-Making” case and his recommenda-
tion on the division of labor . This idea, not completely original,
was presented more than two centuries ago, in 1776 and further
analyzed by Babbage during the first half of the 19th century. A
very long time ago.

We are going to show that Adam Smith himself knew that
the division of labor was a temporary step towards a new age,
which we know now as the “Information Age”. This work at-
tempts to illustrate the inadequate influence of Adam Smith’s
proposal on software production, an influence Adam Smith him-
self would not have supported. It tries to explain the reasons of
this inadequacy, which were already envisioned by Adam Smith.
It intends to shed some light on the software production process
and to show some little, or close to never discussed productivity-
related parameters. It also gives a number of hints on how to
drastically enhance productivity through adapted recruitment
and organization. Lastly, it elaborates on why the fundamen-
tal laws of software production are, more or less intentionally,
simply ignored.

In a nutshell, this document is presumptuous enough to try
proving both Frederick Brooks and Capers Jones wrong. Indeed,
in his 1995 revision of his 1975 best seller “The Mythical Man-
Month” [7], Brooks postulated that no silver bullet existed for
enhancing developers’ productivity, and that there was no single

11

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

strategy, technique or trick that would exponentially raise the
productivity of programmers. In “Assessment and Control of
Software Risks” [9], Capers Jones stigmatized the lack of special-
ization as one of the risk factors endangering software projects.
This document plans to demonstrate that it is on the contrary,
its biggest threat.

It will become clear that the content of this document is
not only relevant to software development, but to human intel-
lectual endeavours involving creativity, innovation, a variety of
software tools and large teams. Movie and music making fall
into this category for instance. Philosophically, the framework
which is closest to this work is Michael Hammer’s “Business
Process Reengineering” [21, 22].

1.2 The division of labor originates from
manufacturing

The division of labor, or labor parcellization, sometimes also
referred to as “job stratification”, or simply “specialization”,
was born as early as the neolithic age (in western Europe, more
precisely the Magdalenian Age, which belongs to the Upper Pa-
leolithic, between c. 18,000 and 10,000 BP). Indeed, historians
consider that specialization started to exist when sedentariza-
tion, and intensive trade began. At that time, our ancestors
had more than one hundred different tools. Among these tools,
there were various kinds of flint stones meant for different pur-
poses. Flint stones were not excavated or discovered, shaped
and polished by the same people. Each of these activities was
endorsed by different specialized groups, leading to commerce of
goods over large distances.

Throughout history, the division of labor was successively
studied by Plato (428/427 BC - 348/347 BC), Xenophon (427-
355 BC), William Petty (1623-1687), Bernard de Mandeville
(1670-1733), and David Hume (1711-1776). However, true in-
dustrial specialization, meant to cut mass production costs dras-
tically, is an idea ordinarily attributed to Adam Smith (1723-

12

1.2. THE DIVISION OF LABOR ORIGINATES FROM
MANUFACTURING

1790).
Historical truth is somewhat different, as explained by Mur-

ray Rothbard in “An Austrian Perspective on the History of
Economic Thought”, Rothbard [45] shows that Adam Smith ac-
tually plagiarised somebody else, and borrowed the idea of the
division of labor, and even the Pin-Making case study, from a
former source: Henri-Louis Duhamel du Monceau (1700-1782).
In his introduction to René-Antoine Ferchault de Réaumur’s
l’”Art de l’Épinglier” [43] - The Art of the Pin-Maker -, [43]
Duhamel du Monceau wrote:

There is nobody who is not surprised of the small
price of pins; but we shall be even more surprised,
when we know how many different operations, most
of them very delicate, are mandatory to make a good
pin. We are going to go through these operations
in a few words to stimulate the curiosity to know
their detail; this enumeration will supply as many
articles which will make the division of this work.
[. . .] The first operation is to have brass go through
the drawing plate to calibrate it. [. . .]

As a matter of fact, it seems [38] that the expression division
of [this] work (division de [ce] travail) in du Monceau refers to
the subdivisions of the text which follows, not the division of
labor. Smith had travelled to France, and spoke French, but
even for the native French speaker who would superficially look
at the text the ambiguity could easily lead to misinterpretation.
It is funny to realize that most likely, the expression division of
labor stemmed from a mistake.

Equally funny, but also enlightening, is the fact that René-
Antoine Ferchault de Réaumur, who wrote “The Art of the
Pin-Maker”, describing different trades with drastically differ-
ent roles for individuals, was among other activities as a scien-
tist, a famous entomologist [17], very familiar with taxonomy.
When you see his insects plates, you are overwhelmed by the
idea of diversity and specialization, including within a species
(see figure 1.3, page 16). The presence of different specialized

13

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

Figure 1.1: L’Art de l’Épinglier (The Art of the Pin-Maker),
with “division de ce travail” highlighted

individuals, each with a modest contribution to a greater goal is
a striking similarity between a wasp hive and a pin-making fac-
tory implementing specialization of work. No surprise Réaumur
became interested in labor parcellization.

So, Smith was not the original author of the ideas attributed

14

1.2. THE DIVISION OF LABOR ORIGINATES FROM
MANUFACTURING

Figure 1.2: A plate showing different types of tools to produce
pins, in Ferchault de Réaumur’s “L’Art de l’Épinglier”, “The
Art of the Pin-Maker”

to him, but it is important to note that, as an author and a
clubber, he powerfully popularized them. These ideas deeply in-

15

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

Figure 1.3: A plate on different types of wasps, in Ferchault de
Réaumur’s “Mémoires pour servir à l’Histoire des Insectes”

fluenced manufacturing. They were even tied to manufacturing.

16

1.2. THE DIVISION OF LABOR ORIGINATES FROM
MANUFACTURING

Babbage, in 1832, entitled his followup work ”On the Economy
of Machinery and Manufactures”. Neither Smith nor Babbage
intended to propose the division of labor for non manufacturing
activities.

The first one to deviate from this goal was Frederick Taylor
[53] in 1911. Taylor wrote:

It is hoped, however, that it will be clear [. . .] that
the same principles can be applied with equal force
to all social activities: to the management of our
homes; the management of our farms; the manage-
ment of the business of our tradesmen, large and
small; of our churches, our philanthropic institutions,
our universities, and our governmental departments.

This is, to say the least, optimistic. It can be argued whether
Taylor intended to talk about the division of labor. Actually,
Taylor has never made a single reference to the division of la-
bor in his works, although in public eyes, especially European
ones, he is often mistaken with Adam Smith as the father of the
parcellization of work. However, Taylor repeatedly mentions the
existence of trades, and the division of labor goes without saying
for him.

In order to understand why Adam Smith’s proposal applies
to manufacturing, we need to understand why the division of
labor increases productivity. Adam Smith explains it: when
a single person is responsible for all the production steps, like
in craft industries, his work involves many different activities,
requiring different tools or machines. Switching from one tool or
machine to another one takes time, and introduces cost, because
of physical movement from one spot to another one, or merely
because of the change of tool. This cost grows linearly as a
function of the number of activities.

Instead of endorsing successively different trades, a workman
should concentrate on a given trade, and labor should be divided
to specialize people. By doing so, the division of labor allows
to eliminate the hidden linear cost. The more activities are
involved, the more labor should be divided, and the more this

17

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

new organization allows for savings. Adam Smith showed how to
move away from craftsmanship and reach what has been known
as an ”industrial” organization.

In that explanation lies the fact that the division of labor
should not apply to all human activities. We saw that the di-
vision of labor attempts to resolve the cost related to switching
from one tool or machine to another one. It should not be ap-
plied to human activities which do not involve different tools or
machines, or which do not imply a meaningful cost when switch-
ing between them.

As we shall see, although Taylor’s statement of universal-
ity is amusing a posteriori, his overly enthusiastic point of view
is, surprisingly, still shared by many people organizing software
production. Today, unfortunately, very few people in the soft-
ware industry have actually read Adam Smith or know the root
motivation for the division of labor.

Given the clear insight Adam Smith had about manufactur-
ing, did he think that the division of labor was a final solution
for the organization of work? As a matter of fact, he didn’t, and
it is clear in the Wealth of Nations.

1.3 The division of labor is a self destruc-
tive phase

Not only did Adam Smith propose the division of labor solely
for manufacturing, he also explained that was only a transient
phase allowing for the start of the revolutionary rise of automa-
tion. Adam Smith himself was therefore fully aware of the self
destructive nature of the division of labor. He explains it the
following way:

[. . .] every body must be sensible how much labor is
facilitated and abridged by the application of proper
machinery. [. . .] I shall only observe, therefore, that
the invention of all those machines by which labor
is so much facilitated and abridged, seems to have
been originally owing to the division of labor. [. . .]

18

1.3. THE DIVISION OF LABOR IS A SELF
DESTRUCTIVE PHASE

in consequence of the division of labor, the whole of
every man’s attention comes naturally to be directed
towards some one very simple object. It is naturally
to be expected, therefore, that some one or other of
those who are employed in each particular branch of
labor should soon find out easier and readier meth-
ods of performing their own particular work, when-
ever the nature of it admits of such improvement. A
great part of the machines made use of in those man-
ufactures in which labor is most subdivided, were
originally the invention of common workmen, who,
being each of them employed in some very simple
operation, naturally turned their thoughts towards
finding out easier and readier methods of performing
it. Whoever has been much accustomed to visit such
manufactures, must frequently have been shewn very
pretty machines, which were the inventions of such
workmen, in order to facilitate and quicken their own
particular part of the work.

Adam Smith saw what we call now pompously ”offpeopling”1,
very clearly, as early as during the mid-eighteenth century. Ma-
chinery would ultimately replace many different trades, and the
division of labor was only an initial phase towards ultimate au-
tomation.

Here is an interesting anecdote he quotes:

In the first fire-engines2 , a boy was constantly em-
ployed to open and shut alternately the communica-
tion between the boiler and the cylinder, according
as the piston either ascended or descended. One of
those boys, who loved to play with his companions,
observed that, by tying a string from the handle of

1One of the historical steps in complete offpeopling was reached in 1987,
when Steve Jobs finished the construction of a fully automated factory for
the first product of NeXT Computer, the NeXTcube.

2This was then the designation for steam engines.

19

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

the valve which opened this communication to an-
other part of the machine, the valve would open and
shut without his assistance, and leave him at lib-
erty to divert himself with his play-fellows. One of
the greatest improvements that has been made upon
this machine, since it was first invented, was in this
manner the discovery of a boy who wanted to save
his own labor.

Adam Smith indicates another source of automation break-
throughs, the makers of the machines themselves:

All the improvements in machinery, however, have
by no means been the inventions of those who had
occasion to use the machines. Many improvements
have been made by the ingenuity of the makers of the
machines, when to make them became the business
of a peculiar trade [. . .]

It means that Adam Smith clearly envisioned the transient
Industrial Age and the situation beyond. Indeed, as Alvin Tof-
fler [56, 57] explained it, after the Agrarian Age, followed by
the Industrial Age, the Information Age arose. It is interest-
ing to remark that the Industrial Age, based on the division of
labor, actually gave birth to the Information Age. Without un-
derestimating the genius of the Information Age fathers, all the
following events belong to a philosophical continuum initiated,
and to some extent, envisioned, by Adam Smith:

• 1776: Adam Smith’s recommendation for maximal divi-
sion of labor;

• 1830-1842: Charles Babbage studies Adam Smith works on
the division of labor, and creates his Analytical Engine;

• 1880: Herman Hollerith’s tabulator;

• 1934: The atomic operations — ultimate parcellization
of processes — proposed by Alan Turing in his universal
machine;

20

1.3. THE DIVISION OF LABOR IS A SELF
DESTRUCTIVE PHASE

• 1936: Konrad Zuse Z1 computer;

• 1937-1942: John Vincent Atanasoff and Clifford Berry’s
digital computer;

• 1943-1946: John William Mauchly and John Presper Eck-
ert’s ENIAC;

• 1947: John von Neumann’s machine;

• 1970: the Intel 4004 processor;

The transition between the pre and post-Turing eras may
sound like a discontinuity, even if it is obvious that the Turing
Machine attempts to reach parcellization quanta — the instruc-
tions —, which remind of Adam Smith’s trades processes par-
cellization. There are additional links between the mechanical
progress done until Turing and the apparently abstract concept
he coined in, as a mathematician. The term used by Turing
to describe his concept was ”machine”, and, this is less widely
known, Alan Turing, with his machine, had the intention to de-
scribe mathematically ”mechanical processes”. This expression,
widely forgotten now, was replaced by the nineteenth century ac-
ceptation of the word ”algorithm”, which obliterated the links
with the Industrial Age, leaving only the word ”machine” in
Turing contribution, as a memory of the old age.

Since the Wealth of Nations, automation has been a path of
no return (but anecdotic) to the division of labor. While au-
tomation used to create — more or less — brutal discontinuities
during the Industrial Age, the Information Age introduces a nev-
erending disruption, a continuous revolution process. Software
is now involved in every of our familiar objects. Furthermore,
software is reflexive, it automates its own production, and its
production is a continuous innovation process. Brutal techno-
logical discontinuities exist, but within a constant revolution. In
order to convince yourself of the relationship between the Infor-
mation Age and revolution, simply make a search on Amazon
on books related to IT and containing the word ”revolution”
in the title, at the time of writing, you would get around 250

21

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

hits. This is not accidental, it tells a lot. Grace Murray Hopper,
one of the very first programmers, insisted untiringly that man-
agers shouldn’t be afraid of change. In her opinion, ”the most
damaging phrase in the language is ‘We’ve always done it this
way.’”.

The term revolution is not accidental, as it found a power-
ful echo during the counterculture period of the 60’s. Stewart
Brand [6] explains it clearly enough in his paper for Time Mag-
azine: ”We owe it all to the hippies / Forget antiwar protests,
Woodstock, even long hair. The real legacy of the sixties gen-
eration is the computer revolution”. Even to date, some of the
inheritants of the hippies are still working in IT, Richard Stall-
man being one of the icons in the category. Steven Levy [32], in
”Hackers: heroes of the computer revolution” explains it very
clearly.

Since the Information Age implements a continuous revolu-
tion through software production, is Adam Smith’s division of
labor, meant for the Industrial Age only, a reasonable organiza-
tion for software production?

1.4 Software production and the assembly
line

Considering software production as an assembly line, or specif-
ically as a factory, an auto-proclaimed reminiscence of man-
ufacturing, has openly and repeatedly been done. ”Software
Factory” is a very unfortunate expression, because it is very
misleading. It conforts people into thinking that software pro-
duction and manufacturing have something in common. The
venerable Bob Bemer, inventor of time sharing3 and ASCII4

introduced it. In his mind it meant a factory constituted of soft-

3A technique allowing several users to interact with a computer in the
same time, instead of queueing, as it was the case before its invention.
Time sharing allocates a slice of time of the computer to each of the users,
in rosters.

4American Standard Code for Information Interchange, a code now uni-
versally used to encode characters into 8 bits numbers.

22

1.4. SOFTWARE PRODUCTION AND THE ASSEMBLY
LINE

ware. Unfortunately, the insistance of many to build a factory
for software, inspired from the division of labor, with human
beings, has prevailed.

The love or sheer hatred that some professionals have for
or against software factories is clearly described by Ivan Aen,
Peter Bøtcher and Lars Mathiassen in ”The Software Factory:
Contributions and Illusions” [1]:

The term factory signals a commitment to long-term,
integrated efforts — above the level of individual
projects — to enhance software operations. This is
not only a powerful, but also a necessary idea taking
the challenges involved in professionalizing software
operations into account. But for many the term fac-
tory has at the same time the controversial connota-
tion that software development and maintenance is
comparable to mass-production of industrial prod-
ucts, and arguably this is not the case. This can
easily lead to illusions with respect to the kinds of
interventions that can, in fact, improve software op-
erations. It is not surprising, therefore, that some
software professionals like the concept while others
do not.

One of the very famous initiatives of the past is one of EU-
REKA5 avatars: EUREKA Software Factory. ESF started as a
3,000 man-years project founded by a group of European part-
ners in 1987, with the intent to improve the process of large-scale
software production. ESF was supposed to deliver not only tech-
nical solutions, but also a model of organization. It reached its
end in 1997, short of any remarkable impact on the day to day
life of European software development organizations. The fac-
tory model did not bring a valuable contribution to software
production.

Most people working in the software business hate to look
at the past. This must be related to the intrinsic revolutionary

5EUREKA used to be a pan European industrial project aiming at boost-
ing Europe’s competitivity. It started in 1985.

23

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

nature of IT, and the fact that professionals eagerly look at what
lies in the future, while being heartless for the past.

If we try to take a historical standpoint on the history of soft-
ware development, we notice that the number of trades involved
in software construction was from the beginning already quite
large. There were architects, analysts, keyboarders, operators,
punch operators, programmers, maintenance personnel. But it
never was comparable to Adam Smith’s report on pin-making
shops:

One man draws out the wire, another straights it,
a third cuts it, a fourth points it, a fifth grinds it
at the top for receiving, the head; to make the head
requires two or three distinct operations; to put it
on is a peculiar business, to whiten the pins is an-
other; it is even a trade by itself to put them into the
paper; and the important business of making a pin
is, in this manner, divided into about eighteen dis-
tinct operations, which, in some manufactories, are
all performed by distinct hands [. . .]

Nothing to do either with Frederick Taylor’s estimate on reg-
ular industrial establishments:

In an industrial establishment which employs say
from 500 to 1000 workmen, there will be found in
many cases at least twenty to thirty different trades.

The number of trades in the software industry, with time,
has deeply evolved. Some have disappeared, thanks to the re-
flexivity of software helping to automate software construction
tasks themselves. Some have been blooming. Many if not most
organizations today have specialists for various aspects of soft-
ware production. Some organizations even established separate
groups for software construction and software maintenance, two
different trades being used for those two activities. Common
sense says that if such division of labor is implemented, produc-
tion costs are high, and the construction trade looses any feeling
of responsibility. Only failure lies as at the end of the road.

24

1.5. THE OVER SENSITIVITY ABOUT SALARIES

The unabated obsession to create trades can clearly be at-
tested by the type and variety of software development job ad-
vertisements published in the press. A specialist of such and
such tool is required, sometimes with a specified version num-
ber. This reminds unavoidably of manufacturing. The people
publishing these ads are expecting to fill trades operating in a
factory.

But what are the main mechanisms pushing towards consid-
ering software production as analogous to manufacturing, and
attempting at all costs to apply the division of labor?

1.5 The over sensitivity about salaries

From a somewhat simplistic standpoint, the software world is
split between professionals and user companies. Among those
user companies, you find Banks, Airlines, Insurances for in-
stance. Being a user company does not mean that the company
is not doing software development. It means that the main mis-
sion of the company lies somewhere else. This is very clear for
the business areas listed above. Most of the large user cor-
porations have actually very large IT departments. It is not
uncommon to find thousands of people in the IT department of
a user company.

In a user company, IT is perceived a cost because there are,
unfortunately, very little possibilities to measure the actual sav-
ings IT allows to make. When a project is initiated, very scarce
are the situations where business processes are kept identical,
and the avid expectations everybody has on the level of automa-
tion usually exceed by far existing practices. As two situations,
equivalent in terms of processes, cannot be compared, the added
value IT brings cannot easily be assessed.

Cost being the obsession of the IT department, it is very
natural to keep a very tight control on all the elements of the
cost structure. After all, the cost in an IT department is rather
simple to analyze: the cost deriving from the consumption of
external resources is in the hands of purchase professionals who
do their job at negotiating prices very well. The only mean-

25

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

ingful residual variable cost is the salary mass. As a natural
consequence, in order to keep the IT cost effective, the natural
conclusion is to keep salaries under tight control, and as low
as reasonably possible. Statistically, this does not allow for re-
cruiting the top tier individuals, rather the bottom one. We
must remember that Taylor, in 1911, even in manufacturing in-
dustries, pushed for avoiding minimal salaries, and pleaded for
higher ones allowing for even higher productivity. The idea of
minimizing salaries is therefore going even against classical man-
ufacturing rules.

By trying to minimize salaries, most users limit the analysis
to only one parameter of the actual cost, the individual cost per
unit of time, in other words, the salary.

William Waddell and Norman Bodek, in “Rebirth of Amer-
ican Industry - A Study on Lean Management”[58], have high-
lighted the dangers of such an approach, inspired from Alfred
Sloan, who invented “management in itself” as a direct inher-
itance of the idea of specialization (why bothering about tech-
nology, there are specialists for that). Their book is about man-
ufacturing, not on software. In order to explain how silly it is
to consider staff as a “variable cost”, they try to take the most
obvious example they can take:

To understand the magnitude of Sloan and DuPont’s
debacle, the best analogy today would be to look
again at one of the companies with the funny names.
Imagine Google, Yahoo or Microsoft declaring that
computer science is a commodity — basically any
warm body from the local temp agency can do it —
and that the key to success in running these tech-
nology companies is not technology, but finance and
marketing. Imagine further that they all but de-
clare war on their programmers and system design
folks, classifying them as variable costs and devising
a management system aimed directly at cutting their
numbers and minimizing their pay.

The only way such a scenario would allow those com-

26

1.5. THE OVER SENSITIVITY ABOUT SALARIES

panies to survive with such a hair-brained strategy
would be (1) if all of the other American tech com-
panies did the same thing and (2) another world war
broke out and the Air Force blew up every other
computer in the world.

Unfortunately, this situation exists frequently in technology
companies, especially the ones which have gone vertical.

So, what should companies do if staff is not a variable cost?
What really matters is not the salary, it is the unitary cost C

for an employee to achieve one unit of production. Very plainly,
C = St, where S is the cost of the employee per unit of time (the
salary), and where t is the time required to deliver one unit of
production. This product is the actual cost. This cost is the one
which needs to be minimized, not simply the S factor. Consid-
ering only the S factor leads to minimizing individual salaries.
Considering only the variations of the S factor, in other words,
means neglecting the variations of the t factor. What does it rep-
resent? The t factor measures the time the individual requires to
produce one unit. This is the measure of productivity. Neglect-
ing its variations over variations of S means that interpersonal
variations in productivity are negligible over salary variations.
Is it that obviously true? At least, it can be perceived true, as
the literature available for decision makers is mostly silent about
interpersonal productivity variations. Only very stubborn and
systematic readers can find a few scattered tracks of it.

Before proceeding, a word is required about the mysterious
“unit of production” used above. It can be debated whether
a unit of production exists in software. It is well known that
immediate ideas that come to mind to define it are inadequate.
A line of code for instance is not a very good unit, as we all
know that verbose code can be produced very quickly. Better
ways to measure the ”weight” of a piece of software have been
developed with time, such as Allan J. Albrecht’s function point
analysis [2]. It is still questionable, as it measures the ”weight”
of a given solution to a problem, and not the weight of the
optimal solution to a problem. COCOMO (for COnstructive

27

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

COst MOdel) [5] is no different. Everybody knows that there
are enormous variations between the two. The optimal solution
is very frequently the smallest in size (same as in mathematics
by the way). Challenges existed in the early days of software
development to remove a few instructions, to reach even higher
performance. It was called ”code bumming”. This was not
merely optimization, but required completely revisiting the so-
lution and changing the algorithm. This search for an optimal
solution brings, even today, interesting mathematical results.

Bjarne Stroustrup, the inventor of the C++ programming
language, and Professor at the Texas A& M University, gave me
his view on that specific topic:

The best programmers apparently effortlessly pro-
duce code of a completely different level of quality
at a rate that is very much higher (i.e. you get both
quality and quantity — and they tend to solve each
problem with far less code than the average program-
mer).

Knowing a priori the complexity to deliver a piece of soft-
ware (which is the number of units of production it requires)
is not only more difficult than measuring the complexity of a
given solution, it is clearly impossible. Producing software is
pure innovation, and innovation cannot easily be planned. Fur-
thermore, if a method allowing to compute the complexity of a
software problem a priori existed, it should be able to determine
easily that the cost of an insoluble problem is infinite. We all
know that this is impossible, it is mathematically undecidable.

All this being said, the absence of a fully satisfying ”unit of
production” should not prevent us from using imperfect ways
to approach it. Function point analysis, COCOMO, and even
number of lines of code are very interesting indicators.

Anyway, even if no unit of production exists in the software
field — I am not far from believing that for the reasons listed
above — the relative productivity of individuals can be evalu-
ated on a given stated problem. The time to find a solution and

28

1.6. INTERPERSONAL DISCREPANCIES OF
PRODUCTIVITY

the cost associated to it, for a precise given quality of delivery6 ,
can both be measured. As a conclusion, relative productivity
can be defined and measured without requiring a production
unit.

Let us now investigate the variations of the neglected param-
eter: productivity.

1.6 Interpersonal discrepancies of produc-
tivity

Even when they are aware of it, very few IT managers would
publicly admit that huge productivity discrepancies exist be-
tween people in their staff. We shall discuss later why this is so.
Meanwhile, it is a fact that ratios of productivity between de-
velopers reach 1 to 2 very easily, 1 to 5 frequently, 1 to 10 rather
often, while 1 to 20 or more happens reasonably often. Some
cases exhibit ratios of one to the infinite. Nathan Myhrvold,
former Chief Scientist at Microsoft says:

The top software developers are more productive than
average software developers not by a factor of 10X
or 100X, or even 1,000X, but 10,000X.

Similarly, Robert L. Glass [20] writes:

The best programmers are up to 28 times better than
the worst programmers.

Steve Jobs is known to have declared that the ratio of pro-
ductivity between the best developers and the average ones reaches
100. In The Lost Steve Jobs Tapes, which record conversations
Jobs had with journalist Brent Schlender in June 1995, we can
hear:

6It is very important to set the level of quality expected, as, if it was not
defined, it would be easy to degrade it to improve the time to deliver it.

29

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

In most businesses, the difference between average
and good is at best 2 to 1, right? Like, if you go to
New York and you get the best cab driver in the city,
you might get there 30% faster than with an average
taxicab driver. A 2 to 1 gain would be pretty big.

The difference between the best worker on computer
hardware and the average may be 2 to 1, if you’re
lucky. With automobiles, maybe 2 to 1. But in soft-
ware, it’s at least 25 to 1. The difference between
the average programmer and a great one is at least
that.

The secret of my success is that we have gone to
exceptional lengths to hire the best people in the
world. And when you’re in a field where the dynamic
range is 25 to 1, boy, does it pay off.

This is a little secret of the software industry, which is never
openly debated, and which raises a great deal of uneasiness.
Discrepancies of productivity can of course arise if discrepancies
of deliverables quality are accepted. But even in the case ap-
ples and apples are compared, and the same level of quality is
reached, ratios of productivity from one person to another can
reach the factors listed above.

One to the infinite is the easiest to explain. Some developers,
when confronted to a given problem are convergent and some
others are not. What does that mean? Among the various
tasks that a developer is endorsing, bug tracking is one that
requires a combination of creativity and extreme rigor. Some
pretty bad developers, when facing a difficult piece of software,
tend statistically to introduce slightly more than one bug every
time they fix one. Their activity never converges, and their
deliveries never pass qualifications. Such developers do exist.
After all, at least half of the significant software projects in the
world ultimately fail, and people like that can stay unnoticed
during ages. When considering their productivity with respect
to the one of a converging developer, the ratio of productivity is
infinite.

30

1.6. INTERPERSONAL DISCREPANCIES OF
PRODUCTIVITY

Let me give another real life example. I had in my team a
developer who had been working one year or so on a reputedly
moderately difficult problem. But we know it is impossible to
assess the difficulty of a problem a priori when it is not falling
into a very standard model. After one year, the piece of code he
was working on was never qualified to go to production. Every
time he tried to get it through quality assurance, it would fail at
some point. The developer would work on it for a while, would
believe he had fixed the bugs, would submit it again, and would
fail yet another time. I could have concluded:

• That the problem was intrinsically more difficult than ex-
pected, and no developer would ever be able to deliver a
solution, or

• That the developer was divergent , and that another one
should take over his task.

How to choose between those two? I chose to select one of
the smartest developers I had. Somebody who had repeatedly
proven his ability. If he succeeded, I had a proof the former
developer was not convergent (in front of the particular task he
was assigned to), if he failed, I had enough evidence that the
task was very difficult.

After the replacement happened, the piece of software was
delivered in one day and a half. It passed all qualifications suc-
cessfully. This was many years ago, we never heard anymore
about it.

Was the ratio of productivity between the two developers
365/1.5, that is in excess of 240 times? Very likely not. I be-
lieve the first one would never have delivered in a lifetime. The
first developer was not convergent, and the ratio of productivity
between the two, in the context of this problem, was infinite.

Now, what about ratios from 1 to 5, one to 20, even when
comparing convergent developers?

Examples of very high productivity are, of course, not re-
cent phenomenons, and some are now part of history. The first
recorded ”feat” in terms of productivity was recorded at the

31

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

time of the MIT pioneers. It was the one of Alan Kotok, Peter
Samson, Bob Saunders, Bob Wagner and a couple of others. In
1961, they developed an entire assembler for the PDP-1 over a
single week-end.

Bill Gates, before founding Microsoft, when still a student
at Harvard, called MITS, the makers of the Altair 8800, to tell
them he had an implementation of the Basic programming lan-
guage for their machine. He had nothing, and nobody, even the
most gifted, had been able to make a Basic interpreter fit into
such a small machine. But when MITS expressed interest for
his product, he developed this implementation in only 8 weeks,
mostly by himself, and it worked perfectly. To date, he says he
still remembers all the instructions.

In the eighties, Richard Stallman fought successfully alone
against Symbolics, a company which was threatening his idea
of free software. He replicated alone what Symbolics developers
were producing, and gave access to his source code.

Donald Knuth has been the sole developer of TEX and Meta-
Font, the very sophisticated piece of software used to typeset this
document.

Thielen [54] reports the following stories:

The original Lotus and dBASE were probably the
two most successful application programs ever writ-
ten. Lotus was written by one person in 18 months.
Also, the macro capability was added by the devel-
oper at the end because he had some extra time — it
wasn’t even in the informal spec. dBASE was writ-
ten by one person over a two-year period while he
also held a full-time job. Brief (the text editor) was
written in six months by two developers who had just
graduated from college. The Zortech C++ compiler
was written by one person in less than one year.

Levy, in ”Hackers: Heroes of the Computer Revolution” [32]
writes, about the implementation of LISP on PDP-6:

The crucial sections were written by Greenblatt and
another hacker. Two or three people on a project

32

1.6. INTERPERSONAL DISCREPANCIES OF
PRODUCTIVITY

were considered The Right Thing — far fewer than
IBM’s so-called ”human wave” style of throwing dozens
of programmers at a problem and winding up with
junk.

In the May 2010 issue of Wired, Steven Levy, who authored
the 1984 book “Hackers: Heroes of the Computer Revolution”
[32], wrote on Mark Zuckerberg, founder of facebook:

Zuckerberg’s adopted style may not come from the
golden age of hacking, but his work ethic does. “We
didn’t start with some grand theory but with a project
hacked together in a couple of weeks,” Zuckerberg
says. “Our whole culture is, we want to build some-
thing quickly.” Every six to eight weeks, facebook
conducts “hackathons,” where people have one night
to dream up and complete a project. “The idea is
that you can build something really good in a night,”
Zuckerberg says. “And that’s part of the personal-
ity of facebook now. We have a big belief in mov-
ing fast, pushing boundaries, saying that it’s OK to
break things. It’s definitely very core to my person-
ality.”

In the ongoing competition for talent, Zuckerberg be-
lieves that the company with the best hackers wins.
“One good hacker can be as good as 10 or 20 engi-
neers, and we try to embrace that. We want to be the
place where the best hackers want to work, because
our culture is set up so they can build stuff quickly
and do crazy stuff and be recognized for standout
brilliance.”

I have personally seen a single developer, redoing alone the
leading product of a software editor in only three months. This
was not a small product. His delivery was superior by far, with
several orders of magnitude of speed improvement.

I have had one single developer taking over a product which
was taken care of by 20 people. I had so many customer com-

33

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

plaints on this product that the best solution I found was to
replace everybody by a single very smart person. This was an
extraordinary success. All bugs and customer complaints disap-
peared in a few weeks, and the subsequent commercial success
was superb. When I started feeling that leaving a single person
on a product was dangerous, as he could break one of his legs or
suddenly turn sick, I tried to add another one. That other one
was an average one, and the difference between the two was so
striking, that the second one could only barely follow what the
first one was doing, without being able to help in any way.

Why do most software professionals have so many similar ex-
amples in memory? Discrepancies of productivity of this magni-
tude are difficult to believe for the ones who have not witnessed
them. One of the reasons explaining the skepticism about these
stories is that when it is about manufacturing, examples of these
discrepancies have never been reported.

Never? The name of Stakhanov is in everybody’s minds.
Stakhanov was a hero of the Soviet Union. Alexey Stakhanov
was a miner, who was said to have outperformed the production
norm by a factor of 14. In 1985, The New York Times published
an article saying that Stakhanov’s feat was only propaganda, and
that the record had been “prepared”. In 1988, the Soviet news-
paper Komsomolskaya Pravda claimed that this performance
was obtained by using the help of Stakhanov’s colleagues. After
all, Stakhanov was simply a marketing tool, conceived to con-
vince the Occident that the Soviet model was capable of stun-
ning performance. 14 times is reputedly not achievable, if the
same technique is used7 . Indeed, every time human movement is
involved, like in non specialized pin-making, or even when run-
ning 100 meters, variations between individuals are small. On
the 31st of May 2008, the world record for running 100 meters
was beaten by the Jamaican Usain Bolt, in 9”72. A fair amateur
runner completes 100 meters in 14”, merely 44% slowlier than
Bolt.

7In the specific case of Stakhanov, as reported by Komsomolskaya
Pravda, an increased specialization of labor and task sequencing had been
put in place, which might explain in part the performance of the miner.

34

1.7. THE EXPLANATION

Coming back to Stakhanov, given the figures truly acknowl-
edged in software production, 14 times a quota is not a very spec-
tacular record. Software production has its authentic Stakhanovs,
even better, and in large numbers.

Figure 1.4: Alexey Stakhanov, front, with his team

1.7 The explanation

This situation is due to the fact that software production is es-
sentially an intellectual activity. Intellectual productivity varies
greatly from one person to another one. Let us take an example
somewhat, even if not fully, related: theorem proving. When ex-
amining the performance of different math students, and their
ability to build a proof, it can be seen that some are repeatedly
two times, three times, ten times, or the infinite times faster
than others. Why so? Because theorem proving is an intellec-
tual activity and nothing hampers the speed of the mind. The
use of the chalk on the blackboard — I should say a marker now
— is a negligible manual intervention. Software production is
the same. Software production is of course not only program-

35

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

ming, it also involves a great deal of innovation, specification,
documenting, testing. But all those are also intellectual activi-
ties. Typing on a keyboard is a negligible manual intervention,
but most people stop at the surface of things. A computer, a
machine, is involved, so it must no doubt have something to do
with manufacturing.

As early as 1968, Douglas Engelbart, during an incredibly
visionary speech now often called the ”mother of all demos”8 ,
while introducing the concepts of personal computer, mouse,
hypertext links, version control, project management software,
client/server model, groupware, videoconferencing, etc., said:

The research program that I am going to describe to
you is quickly characterizable by saying: if in your
office, you as an intellectual worker, were supplied
with a computer display backed up by a computer
that was alive for you all day, and was instantly re-
sponsive9 , how much value could you derive from
that?

Engelbart brilliantly envisioned the future with an “intellec-
tual worker” interacting almost constantly with a computer, at
a time when the computer was a completely insulated machine
people would have access to only occasionally.

Software development is not the only human activity which
is sometimes confused with manufacturing. Robert E. Pirsig,
in ZAMM (”Zen and the Art of Motorcycle Maintenance: An
Inquiry into Values”) [39], explains that the very same mistake
is made about the maintenance of vehicles:

Not everyone understands what a completely ratio-
nal process this is, this maintenance of a motorcy-
cle. They think it’s some kind of a ”knack” or some

8December 9, 1968 at San Francisco’s Brooks Hall, now Bill Graham
Civil Auditorium.

9Engelbart, interestingly enough, stumbles upon this word during his ver-
bal comment of the demonstration and initially pronounces ”responsible”,
instead of ”responsive”.

36

1.7. THE EXPLANATION

kind of ”affinity for machines” in operation. They
are right, but the knack is almost purely a process
of reason, and most of the troubles are caused by
what old time radio men called a ”short between
the earphones,” failures to use the head properly. A
motorcycle functions entirely in accordance with the
laws of reason, and a study of the art of motorcycle
maintenance is really a miniature study of the art of
rationality itself.

Or, similarly:

An untrained observer will see only physical labor
and often get the idea that physical labor is mainly
what the mechanic does. Actually the physical labor
is the smallest and easiest part of what the mechanic
does. By far the greatest part of his work is careful
observation and precise thinking. That is why me-
chanics sometimes seem so taciturn and withdrawn
when performing tests. They don’t like it when you
talk to them because they are concentrating on men-
tal images, hierarchies, and not really looking at you
or the physical motorcycle at all. They are using
the experiment as part of a program to expand their
hierarchy of knowledge of the faulty motorcycle and
compare it to the correct hierarchy in their mind.
They are looking at underlying form.

Motorcycle maintenance, by the way, has a lot to do with
software bug tracking. In case there is any doubt left, and you
think that the analogy between mechanic work and software
development is actually demonstrating that software develop-
ment should be considered as a lower grade work, you should
revise your opinion on mechanic work. Next time you go to the
garage and ask for reasonably sophisticated maintenance, check
the hourly rate against the one you would pay for a contractor
developing software. You’ll see how similar they are. And there

37

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

are several orders of magnitude of complexity between an engine
and a piece of software.

Are there any additional reasons explaining why the vast ma-
jority of people ignore that stunning productivity discrepancies
exist in the field of software production? We shall discuss this
specifically, and a lot of reasons can be found. The first that
comes to mind is a simple one, measuring discrepancies of pro-
ductivity without a formal experimental framework is difficult.
As explained earlier, no satisfying definition of production unit
exists.

Lutz Prechelt from Karlsruhe University is one of the scarce
people who have tried to set a scientific framework [42] for mea-
suring, among other parameters, the relative performance be-
tween programming languages, and the productivity of devel-
opers using them. Very few studies of the same quality exist,
in spite of peremptory claims from a language camp10 against
another one.

This is often due to interpersonal technological affinities dis-
crepancies which bias the results. The affinity of the individuals
involved in the test with a given programming language is the
dominant factor, not the programming language itself.

Prechelt, in order to resolve this, uses different teams, in par-
allel, to avoid abnormal data. The result shows, as anticipated,
according to Prechelt, that:

For all program aspects investigated, the performance
variability due to different programmers (as described
by the bad/good ratios) is on average about as large
or even larger than the variability due to different
languages.

which lead Prechelt to conclude that:

10Donald Knuth prefers the more colorful term high priests, which finds its
origins far away to the origins of IT at MIT where priesthood was a common
term used to refer to the limited circle of people who had physical access to
the computers. This has been funnily portrayed in the ”Hitchhiker’s Guide
to the Galaxy”.

38

1.7. THE EXPLANATION

Interpersonal variability, that is the capability and
behavior differences between programmers using the
same language, tends to account for more differences
between programs than a change of the programming
language.

Now trying to measure interpersonal productivity discrep-
ancies is very difficult too. Is anybody able to afford starting
the very same project with different teams and check at the end
who was more efficient? Microsoft is reported [12] to be able to
afford this, not for productivity measurements, but for the sake
of the product itself.

Dave Thielen [55] says:

The single most important contributor to productiv-
ity is the quality of the employees. Everything else
is secondary to this one criterion.

Similarly, Robert L. Glass writes [20]:

The most important factor in software work is not
the tools and techniques used by the programmers,
but rather the quality of the programmers them-
selves.

While this can be debated, because it puts organization sec-
ond, it clearly sets the tone. The purpose of this document is
to explain that organization and quality of the employees are
deeply intertwined, none of them being secondary. It cannot
therefore fully agree with Thielen’s or Glass’ statements, except
if we consider the usual organization of work which is indeed
the worst possible. But it is a fact that Microsoft tries to re-
cruit the top 5%, and makes occasional use of puzzles and tests
similar to IQ during interviews, as explained by William Pound-
stone [41]. Other professional software corporations are reput-
edly extremely selective, among them Amadeus11 and SAP12 to
mention two European ones.

11http://www.amadeus.com
12http://www.sap.com

39

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

Donald Knuth reports a ratio even smaller, of 2% (one out
of 50). He said, in September 1996, during an interview by Dave
Andrews for Byte Magazine:

We’ve seen in programming classes that one out of 50
students really grooves on programming. Very few
are really into it as top computer scientists. We find
that this ratio has held steady for 30 years. [. . .]
I don’t look at it as a matter of one person being
better than another. Some people are simply going
to be able to write much better code [. . .]

Bjarne Stroustrup, the inventor of C++, Professor and holder
of the College of Engineering Chair in Computer Science at
Texas A&M University, was kind enough to provide me his view
on the same subject:

I basically agree and I can’t really estimate the per-
centage. Even of the self-selected people who become
programmers and/or take programming courses, most
will at best become journeymen programmers who
laboriously produce poor code that barely do more
good than bad. Maybe 10% raise above that.

This is not simply a question of intelligence or ef-
fort. Very smart (e.g. good mathematicians) and
very hard working people regularly produce lousy
(i.e. hard to maintain, hard to use, sometimes buggy,
and poorly performing) code.

Thielen indicates that his experience shows that ratios from
1 to 25 can be seen commonly. This ratio can be confirmed by
most experienced software professionals.

Robert L. Glass wrote in 2008 in IEEE Software magazine
[20]:

It’s well known, if less appreciated, that some peo-
ple are a whole lot better at building software than
others. Scattered through decades of the software

40

1.7. THE EXPLANATION

engineering literature are studies reporting on “indi-
vidual differences” ranging from 28:1 (for error iden-
tification) to 25:1 (for coding ability) to 11:1 (for
timing efficiency) to 6:1 (for sizing efficiency). These
are differences on the magnitude of 28 times (not 28
percent) better — huge differences. These differences
are less appreciated because we in the software field
have made little use of this knowledge. As practi-
tioners, we haven’t figured out how to identify these
28-times-better people, which might be really impor-
tant if we need to manage a project that must finish
on time and on schedule, or be of ultrahigh quality.
As researchers, we haven’t sought to acknowledge
individual differences when doing experimental re-
search. (For example, how can we be sure, if we’re
studying a particular methodology’s benefits, that
it’s X% better than some other methodology if the
differences between subjects in our study might be
28:1?)

This is one of the most important issues in software
engineering, and has been for more than 30 years.
I first published an analysis of these individual dif-
ferences in my by-now badly obsolete book Software
Soliloquies [19], which was published in 1981. The
studies on which I based that analysis dated all the
way back to 1968. Of course, I’m not the only one
to have written about this matter. I suppose that
neither practitioners nor researchers have been able
to act on these findings simply because doing some-
thing with them falls into the field’s too-hard box.

Let us try to do something with them at last. First, given
these huge productivity discrepancies, what should recruiters
do?

41

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

1.8 Beyond salary: full analysis of cost

Many recruiters, especially among user companies, neglect the
productivity parameter and focus only on the salary. Are they
right to do so?

Let us take two developers, the first with a productivity 10
times larger than the second. To exhibit the same cost for the
company, given that C = St, the productive one should cost 10
times more. Is it the case? Certainly not.

We touch here a fundamental point:

Individual salaries do not vary in the same proportions as
productivity.

This paradoxical conclusion, is, ironically, fully in line with
Frederick Taylor, who was pushing for reaching a more efficient
cost structure by accepting to recruit specific people and to pay
them more than ordinary personnel.

As a result, in C = St, salary, surprisingly, is the cost pa-
rameter which can usually be neglected, as it is today driven by
the employment market through vague parameters, and varies
least. This result is in complete contradiction with common re-
cruitment practices which focus firstly on salary. Statistically,
the people who look ”expensive” are actually the cheapest.

Paul Graham wrote in a 2004 essay:

Economically, this is a fact of the greatest impor-
tance, because it means you don’t have to pay great
hackers anything like what they’re worth. A great
programmer might be ten or a hundred times as pro-
ductive as an ordinary one, but he’ll consider himself
lucky to get paid three times as much. As I’ll explain
later, this is partly because great hackers don’t know
how good they are. But it’s also because money is
not the main thing they want.

It may sound quite cynical, and is probably not, as Graham
is a programmer himself.

42

1.8. BEYOND SALARY: FULL ANALYSIS OF COST

The difference which has just been highlighted between the
software industry or more generally mentofacturing activities
and classical industries is in no way related to the idea that
mentofacturing is in its infancy. It is related to the nature it-
self of intellectual activity. A number of people are desperately
waiting for the software industry to reach some kind of maturity
and start resembling traditional industries. They will have to
wait forever. Software production will never be a conventional
industry, it is the first of an entire new kind.

Alfred Spector and David Gifford, in ”Case Study: A Com-
puter Science Perspective on Bridge Design” [49] said in 1986:

Bridges rarely fall down. In contrast, computer sys-
tems design is one of the least classical of the engi-
neering disciplines, and its products are often poorly
understood, unmanageably complex, and unreliable
[. . .]

The temptation to parcellize software production jobs and
force in manufacturing practices, will continue to be a recurring
phenomenon, as long as its detrimental nature will not be un-
derstood. We shall see that software development is intrinsically
similar to a craft industry.

As we saw, cost can be drastically brought down by carefully
selecting employees, by accepting to pay them sufficiently more
than average people. So, when a software corporation is in a
competitive situation — and this is most of the time the case
—, it has no other choice but to select people who have an
excellent intellectual productivity. If the company doesn’t, it
will not survive ultimately if their competitors understand how
important productivity is in the cost equation.

It is understandable that user corporations do not care so
much. Software development is a side activity for them. If
projects are delivered, they think the cost for software devel-
opment is affecting them only marginally. While this cannot of
course be neglected, it is affecting users far less than it would af-
fect professionals. In reality, user companies are actually deeply
affected by the ratio of project failures.

43

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

It is interesting to look at what happens to corporations who
do not recruit very smart people for software development. If
the low tier people are recruited, there is no other solution but
turning them into instruments, specialize them, and to intro-
duce inefficient trade-based organization. So, there is no other
solution but to create a large number of different trades and to
build a software assembly line. This is, as we shall see, extremely
— even exponentially — inefficient, but it is the least dangerous
organization when you care about delivering something. On the
longer run, specializing people is extremely bad from a human
capital management standpoint, as the software industry has a
revolutionary nature. Everybody has their own feelings about
which technological direction it will likely take. These opin-
ions certainly differ greatly from one person to another. The
only general agreement is that technology is bound to change
in brutal manners. Specializing people is unfortunately leading
them to be inadapted at some future point in time. By the way,
the software industry has an insatiable appetite for new peo-
ple, while rejecting with no pity at all hoards of people on the
job market. Many of those people will never find another job
again. In this respect, there is a clear and deep moral issue with
specializing software staff.

The over sensitivity on salary is also pushing lots of cor-
porations to consider off-shore development. As a number of
large professional corporations are quickly developing in lower
cost countries, it seems like a good move to many. In the light of
productivity discrepancies, from 1 to 25, seeking an average 30%
decrease in overall cost (taking into account the costs associated
to distance) sounds ridiculous. This is a 30% discount on aver-
age programmers, while developers can be found to outperform
average programmers easily by a factor 10 in productivity. The
efforts Bill Gates makes personally in trying to convince students
in excellent American universities to join Microsoft, testify that
the growing presence of software giants in lower cost countries
must be due to some other reason than simply the cost. Indeed,
very smart individuals are, by definition, in utterly limited sup-
ply, and to ensure their future expansion, software professionals

44

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

seek to find in other countries another source of very talented
people. And that source exists in developing countries with high
levels of population, even if many of the top tier have emigrated
to high revenue (and cost!) countries.

1.9 Need for a productivity-friendly orga-
nization

Thielen [55] states that the very first contributor to productivity
is the quality of the employees. If Thielen meant that superb
employees are so bright that they can change the organization
if it is not adequate, fair enough. Unfortunately, in many cor-
porations, changing the organization is not easy, and employees
fulfill their mission without having the ability or the power to
change the way the intellectual production is implemented.

Another remark on Thielen’s statement is that however su-
perb the employees are, a bad organization can completely ruin
their individual productivity, and hinder all their activities. Ear-
lier in this document, it has been explained that Adam Smith
wanted to eliminate the costs related to a person repeatedly
changing activity. He explained that a linear cost, function of
the number of activities, is hidden within non parcellized man-
ufacturing labor. The more activities are at stake, the more
costs are associated. In addition, the ”focus” of the employees
is not sufficient to allow them to have ideas to automate their
own activity.

Harlan Mills, in his historical paper, ”Software Productivity
in the Enterprise” published in 1981 [36] wrote:

There is a 10 to 1 difference in productivity among
practicing programmers today — that is, among pro-
grammers certified by their industrial positions and
pay. That differential is undisputed [. . .] While this
productivity differential among programmers is un-
derstandable, there is also a 10 to 1 difference in
productivity among software organizations.

45

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

Software development has very little to do with manufac-
turing. First of all the “switching” costs identified by Smith
are extremely small when producing software. A developer has
many tools at his disposal. These tools, thanks to the multi
purpose nature of computers — remember Turing talked about
it as a ”universal machine” — are all at hand. On modern oper-
ating systems, which are multi tasks, switching from one tool to
another one requires typing a couple of keystrokes. Additionally,
automation is at root of software development so a developer can
modify his own work environment, by himself, and he is used to
doing it.

At some point in time, many managers even questioned the
value of using a computer to produce software. They believed
that continuous access to a computer was not necessary and did
not have any influence on productivity. Of course, this seemed
like making economic sense, given the price of continuous access
to the computer, to share the access with a number of other
people, and work only at times on it. But managers believed also
that people had to ”think” before interacting with a computer,
and work on a piece of paper, while others would take their
turn to access the live computer. That was forgetting the fact
that a computer is so universal, that it can even provide a far
better solution to edit a design or a program than a piece of
paper, a pencil and an eraser. The fluidity, and the help you
get by interacting with a computer is far greater than with any
concrete tools. This even fascinated the early hackers. Steven
Levy, in [32] says:

The challenge of programming appealed to Gosper.
Especially on the PDP-1, which after the torture of
IBM batch-processing could work on you like intoxi-
cating elixir. Or having sex for the first time. Years
later, Gosper still spoke with excitement of ”the rush
of having this live keyboard under you and having
this machine respond in milliseconds to what you
were doing...”.

Adam Smith ”tools switching” linear cost is therefore negligi-

46

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

ble in the software industry. But, in that industry, the difference
between software production and manufacturing brings two ad-
ditional costs, which are also hidden costs, not obvious to all
immediately.

1.9.1 Linear cost related to information exchange

When confronted to a functionally rich problem to solve, soft-
ware construction is very often organized around an assembly
line. It is obvious to all that an assembly line is not required if
the problem fits in a regular programmer’s head. In that case,
everything is handled by the same person.

Within an assembly line, given the complexity of even a mod-
erate size project, a lot of information transfer needs to take
place. Producing software is an innovative process, so knowledge
is constantly evolving. This is very different from a manufactur-
ing assembly line, in which the material passed from one trade
to another one is stereotypical. Information transfer is therefore
a completely new factor, brought by the nature itself of software
production.

Information transfer may occur between the architect trade
and the database trade, or between the database trade and the
trade responsible for server-side code, or between the server-side
trade and the user interface trade.

These are only examples, of course, but they illustrate how
massive information transfer can be. It is to be noted that that
information transfer is mandatory. A general and unique infor-
mation distribution to the various trades in a single shot is not
possible, as the interaction between what the trades produce is
very low level, beyond what specification can reasonably reach.

Information transmission costs and issues exist also in clas-
sical engineering activities, although they are often marginal.
Alfred Spector and David Gifford in ”Case Study: A Computer
Science Perspective on Bridge Design” [49], where they compare
civil engineering of bridges and software development quote Ger-
ard D. Fox:

There aren’t an enormous number of people involved

47

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

in the design; when there are too many they get in
each other’s way, and it becomes more difficult to
keep everyone up-to-date with changes.

Fox talks about bridge engineering, his specialty. Informa-
tion exchange in civil engineering disciplines is not a dominant
factor, as design teams are small. But it is a dominant activity
when developing software. We have to remember that design is
the only activity involved in software development. Everything
else is automated. It is like putting a magnifying glass on the
small design team Fox talks about.

Frederick P. Brooks, in ”No Silver Bullet: Essence and Ac-
cidents of Software Engineering” [8], stated that:

There is no single development, in either technology
or in management technique, that by itself promises
even one order-of-magnitude improvement in pro-
ductivity, in reliability, in simplicity.

As we shall see in section 1.12, statistics show that software
projects success ratio falls roughly exponentially with their size.
So there is plenty of room for improvement. Brooks makes a
risky bet, because we are in such a disastrous situation already.

At the same time, Brooks insists on a point which is surpris-
ingly not highlighted in Spector’s paper, complexity:

Software entities are more complex for their size than
perhaps any other human construct because no two
parts are alike (at least above the statement level).
If they are, we make the two similar parts into a sub-
routine — open or closed. In this respect, software
systems differ profoundly from computers, buildings,
or automobiles, where repeated elements abound.

he adds:

The complexity of software is an essential property,
not an accidental one.

48

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

and

Many of the classic problems of developing software
products derive from this essential complexity and its
nonlinear increases with size. From the complexity
comes the difficulty of communication among team
members, which leads to product flaws, cost over-
runs, schedule delays.

While it may be debated whether software complexity grows
non linearly with its size, information transfer between team
members is clearly identified as one of the key problems to re-
solve.

The cost for information transfer is a linear function of the
number of trades. Therefore, the division of labor in software
production introduces a linear cost related to information trans-
fer. That linear cost was absent in manufacturing.

That cost is one of the reasons explaining why, as Brooks
said, assigning more programmers to a project running behind
schedule, may delay it even more. Adding staff is a very costly
operation, in terms of knowledge transfer, and may further ham-
per the organization.

We need to remember that the linear cost Adam Smith iden-
tified when workmen switched from one machine to another one,
was, by itself, decisive for supporting maximal division of labor,
and deeply changing manufacturing during more than one cen-
tury.

In the software industry, as we just saw, a linear cost exists
also, but this time, it is defavorable to the division of labor. This
alone, should push to implement a minimal division of labor
compatible with a proper production. This is true for division
of labor in the same sense as Adam Smith, which translates
into the creation of different trades. The smallest amount of
trades reasonable should be used. It is also true from a project
standpoint, because, even if it is obvious that many projects
exceed the capability of a few people, and project needs to be
split, the least division is implemented, the more cost effective
the organization.

49

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

There is more to come: behind the linear cost we just iden-
tified, lies a more pernicious one, which is exponential.

1.9.2 Exponential cost related to information ex-
ponential entropy over the assembly line

The hidden exponential cost that lies right behind the linear
cost we just exposed is also related to information transfer. It is
therefore absent from manufacturing, as no information transfer
occurs between manufacturing trades.

To be fully accurate, some similar exponential cost theo-
retically exists even in manufacturing, although usually negligi-
ble. In a manufacturing assembly line, each trade may introduce
errors, mistakes. Over the chain, theoretically, these mistakes
could cumulate, producing ultimately a result which combines
the various mistakes in an exponential manner. In practice, such
an exponential combination of mistakes is easily spotted when it
occurs, as the assembly line manipulates stereotypical objects.

Software production is a very different matter. The bulk of
information is enormous. We already said it is not stereotypical,
but the fruit of a constant innovation. Misunderstandings and
mistakes introduce a great deal of noise along the assembly line.
Just because the solution is too bulky to fit into a single person’s
head, there cannot be a super controller checking that all infor-
mation transmission is correct at each step. The ”noise” which
is introduced brings a gradual entropy that cumulates until the
last step. The delivery of the assembly line can be heavily af-
fected by that. The more mediocre the staff is, the more entropy
is created. As assembly lines are usually made of the low tier
developers, entropy is an acute issue.

To be fully accurate, if we want to estimate the cost we
are talking about, let us make the following assumptions in our
model, to simplify calculation:

• The division of labor is applied over n different persons.

• Work is equally divided among the staff. Each person is
therefore doing a share of the work equal to 1/n.

50

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

• Each person is introducing an entropy ratio of α.

The first person introduces α amount of error to his 1/n part,

which means a volume of 1−(1−α)
n errors. The second one, in

sequence, adds a combination of his errors and the ones brought

by the former one: 1−(1−α)2

n , etc. up to the last one, who adds
1−(1−α)n

n errors.
The total amount of errors, in other words, the entropy is:

n∑

i=1

1− (1− α)i

n

Which is equal to:

1 +
(1− α)n+1 − (1− α)

nα

We can safely qualify this quantity as approaching 1 expo-
nentially when the number of trades grow, even if theoretically it
is not purely an exponential (n can also be found on the denomi-
nator). Indeed, the number of trades appears at the power of an
exponential, increasing — theoretically — pretty quickly (even
with the number of trades on the denominator), with an asymp-
totic value of 1 (meaning 100% of errors). Figure 1.5 shows the
result for a few different values of α. In practice, reasonable val-
ues for the number of trades scarcely excess 10. The part of the
curve we are interested in looks more like an exponential when
the values of α are high. But even when the curve is quasi-linear,
its slope is very worrying, and entropy reaches fast unacceptable
levels. A teaching derived from the interpretation of this curve
is that to avoid an unreasonable amount of entropy, staff must
have very good aptitudes at communicating together, both at
explaining and understanding. It contradicts with the type of
personnel you get when division of labor is put in place.

A lot of project methodologies, like Kent Beck’s Extreme
Programming [4], or more generally the “Agile” family, among

51

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compound error ratio

16%
14%
12%
10%

8%

6%

4%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of trades

Figure 1.5: Compound error ratio as a function of the number
of trades. The lowest curve corresponds to an individual trade
error ratio of 4%, and each of the subsequent upper curves cor-
respond to 2% increments.

which Scrum for instance, try to fix the entropy issue, and pro-
pose to involve the customer throughout the construction pro-
cess. Unfortunately, in general, users are not fluent with technol-
ogy, and they are unable to validate each of the steps. It has led
“agile” methodologies to introduce the idea of iterations, from
mock-up to various levels of prototypes, to repeatedly show to
the customer the solution being shaped. This way, the non tech-
nical customer can actually judge if the solution goes towards
his expectations. While it ensures convergence, going repeatedly
through the assembly chain remains very expensive, and pro-
gressing by making mistakes and backtracking frequently leads
to high costs. There is no surprise that these methodologies

52

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

2 3 4 5 6 7 8 9 10 11 12Number of trades

6%
8%

10%
12%

14%

Individual
trade error ratio

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compound
error ratio

Figure 1.6: Compound error ratio as a function of the number
of trades. Surface view.

are only applicable to smaller projects, where entropy is not too
significant, and where success is more important than cost. In
a small team, most players can easily share information. Agile
methodologies are also applied to projects where requirements
are unclear, and require iterations, by definition. As a conse-
quence, the core issue coming from interpersonal dependencies
is not solved, but simply hidden.

Involving an architect group along the project, as proposed
by Brooks, is somewhat alleviating the burden of entropy, but,
given the level of detail these architects would need to reach in
order to remove it completely, the size of such a group would
quickly raise worries about the redundancy between program-
mers and architects. It would also create the same issues of
sharing knowledge between the architects, moving the problem
instead of fixing it.

53

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

1.9.3 Fixing linear and exponential costs

From the two former paragraphs, it is obvious that, to reduce
software production costs, it is important to reduce dependencies
between personnel. These dependencies did not exist in manu-
facturing organizations, and constitute a new factor to take into
account. Conversely, tools switching costs do not exist when
producing software, thanks to Alan Turing’s universal machine,
which is the base of all modern computers. The rules underlying
software production are, as a consequence, totally different from
the ones which prevail in manufacturing.

In case software production is organized using the division of
labor, fixing the exponential entropy means fixing a posteriori
the delivery of the assembly line. This cost is linear with respect
to the amount of damage, and that damage is exponential with
respect to the number of trades.

An organization that would avoid this entropy would ex-
ponentially improve developers’ productivity. Such a process
would contradict Brooks [7], who said that no silver bullet ex-
isted for enhancing developers productivity, and that there was
no single strategy, technique or trick that would exponentially
raise the productivity of programmers.

That organization exists, it is the one implementing min-
imal dependencies between personnel. Cutting down projects
translates into splitting along least dependencies cleavages. The
division of labor almost always splits along maximal dependen-
cies cleavages.

In practice, except in extreme cases, minimal dependencies
imply minimal division of labor , or in other words, minimal
specialization. Surprisingly, the conclusions that Adam Smith
reaches about maximal division of labor for manufacturing ac-
tivities, are completely opposite to the sensible recommendation
for software organizations:

An organization producing software should reach minimal di-
vision of labor in order to be efficient.

As a corollary, software production should not be imple-
mented using an assembly line.

54

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

Least parcellization does not equate to no parcellization at
all. A number of reasons push for controlled parcellization:

• The lack of people combining several skills may lead to
dividing labor in order to allow recruitment.

• The need for independent decision-making may lead to
split activities between different trades.

• The necessity to build homogeneous solutions may lead
to have separate groups to check the various aspects of
homogeneity.

Scarcity of some skills combinations

An illustration of the scarcity of some skills combination is the
following one: it is rather difficult to find people who combine
excellent mastering of the software development art — in the
sense of Professor Knuth [28] — with classical artistic talents.
Would an organization be able to find a source of talented people
combining the two, it would not be necessary to split activities
requiring software development and artistic work. Practically,
though, such a source of talented people is difficult to find, and
a real need for separating mostly artistic trades arises. As an
example, Web Designers may collaborate with pure software de-
velopers. Similarly, not all developers are able to understand
ergonomical constraints, and specialists of ergonomy may be
necessary. It needs to be noted that the lack of combined skills
can very often be resolved by appropriate training. Even Taylor
insisted on the importance of training on productivity. Smart
people can absorb very large amounts of information and have
a natural ability to manipulate very diverse abstract matters.
Ergonomy can be taught, there is good litterature on the sub-
ject [10], and in case the developers can add this skill to their
capabilities, it is far more efficient to avoid creating specialized
ergonomy groups, and add another skill to the developers in-
stead. But the closest you get from graphical arts, the toughest
it becomes to train every person. It can be argued that artistic

55

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

skills cannot be taught to everybody and technique plays only a
minimal although necessary role.

Independent decision-making

A separate group is required when a separate decision is to be
made, when a conflict of interest arises. It is a very bad idea
to have people being the judge in their own case. Different
organizations are therefore mandatory when concerns are differ-
ent. This establishes organizational boundaries between differ-
ent groups, with independent standpoints, which must not be
coupled. As an example, having marketing defining the prices,
and sales making deals is an example of concern separation. If
sales were defining prices, they could be tempted to lower them
to make their life easier, and their goals more easily reachable.

As an other illustration of this, let us take the example of
software corporations which go beyond the classical model of
software editors. Those corporations endorse responsibility be-
yond the point where they deliver software to their customers.
They both maintain software solutions and operate them, with
contractually guaranteed service level agreements with their cus-
tomers. Among those corporations, you can find Global Distri-
bution Systems, such as Amadeus for instance. GDSs offer fa-
cilities for travel reservations, on behalf of travel providers like
airlines, hotel chains, car rental companies. The operation of
the software is a critical piece of the service offered by GDSs,
and Amadeus has the largest non military datacenter in Europe,
all industries being considered.

The case of this type of corporations who deliver a complete
service is interesting because they are the first significant play-
ers of a new era within the Information Age. They belong to
industry vertical specific software solution providers. The new
era they belong to could be qualified as the Vertical Age, which
followed the Commodities Age. The Commodities Age saw the
birth of software giants such as Microsoft and Oracle. The Ver-
tical Age corporations, instead of exonerating themselves from
any responsibility towards their customers, engage their respon-

56

1.9. NEED FOR A PRODUCTIVITY-FRIENDLY
ORGANIZATION

sibility in terms of amount of bugs or production-related avail-
ability of their software. In some occasions, these commitments
lead them to pay enormous eight figures indemnities to their
customers when an outage occurs. The commitment to pay in-
demnities pushes for a far higher amount of testing than the one
usually done for off the shelf software.

This situation is very different from the one of Microsoft for
instance, which does not guarantee quality with its own assets,
and risks only its reputation when too many bugs arise. As ex-
plained by Thielen [55], Microsoft, like many other software edi-
tors, spends the exact amount of testing so that their software is
accepted by the market. Microsoft is therefore spending the ex-
act amount of resources, no more, no less so that there is no risk
of being displaced by competition. As a consequence, Microsoft
is sometimes even building business cases with its customers to
fix problems. Only when the business cases are positive enough,
will the bugs be fixed. This is often mistaken with a suspected
inability of Microsoft to deliver high quality software. As a mat-
ter of fact it only reflects the strength of Microsoft position. We
are indeed very far from Knuth’s legendary exponentially grow-
ing reward13 for finding TEX bugs, and the obsession to deliver
mathematically proven software, exempt of any bug.

The corporations which spend a large amount of their re-
sources in testing, have put in place cascading test systems,
operated independently from each other. The software prod-
uct percolates through several successive systems, and when a
problem arises, the product is sent back to the engineering staff.
When the problem is fixed, percolation starts back at the be-

13Donald Knuth wrote the following about TEX:

I believe that the final bug in TEX was discovered and removed
on November 27, 1985. But if, somehow, an error still lurks in
the code, I shall gladly pay a finder’s fee of $20.48 to the first
person who discovers it. (This is twice the previous amount,
and I plan to double it again in a year; you see, I really am
confident!).

Note that Don Knuth is a real computer scientist, $20.48 is 2 cents risen to
the power of 11.

57

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

ginning. Some test systems require human intervention, and a
human decision to evaluate risk. It is very important, in order to
avoid parasitic effects, that these human beings make their deci-
sion independently. For those reasons, in many corporations, a
number of trades are dedicated to testing, are independent from
the development workforce, and work independently from each
other. This leads to a necessary parcellization of work.

The need for homogeneity check

When complex homogeneity requirements are to be met, a sep-
arate role may be created to endorse that responsibility. An
example is the need to have consistent graphical user interface
behavior. In that case, when this commonality cannot be en-
forced by a technical framework, a separate human responsibility
is needed. Another famous illustration can be found in Brooks
[7]. In ”The Mythical Man-Month” [7], Brooks explains that
correctly architected solutions, which make sense as a whole, re-
quire a separate architect group. While this is still followed by
many professional software corporations, including Microsoft, it
must be taken with great care. First, it applies only to a sub-
set of the software industry, which produces solutions that differ
meaningfully from each other, and require a different architec-
ture most of the time. This is true in all technical products,
such as the ones IBM or Microsoft are developing. This does
not hold for the solutions developed for vertical markets for in-
stance. Software solutions share the same blueprint of technical
infrastructure, and reuse it over time, until the next technologi-
cal evolution, when architectures are revisited. Also, it does not
hold for corporations which directly map technical responsibil-
ity and managerial responsibility. In this case, the management
line is the group of architects.

1.10 From Programmers to Developers

If minimal division of labor needs to be used as one of the or-
ganization principles for software production, how is it possible

58

1.10. FROM PROGRAMMERS TO DEVELOPERS

to cope with large scale systems? Many projects exceed the ca-
pabilities of a single person, even a very productive one. Large
projects require that work is split among a number of people.
What can be the rules to cut the project down to manageable
sizes a single person can cope with?

The solution is to divide the project in an orthogonal manner
with respect to the classical division of labor and trades. Bound-
aries should not be technological ones, but functional ones. From
horizontal divisions, the divisions become vertical. As a result,
the number of trades should be minimal, and a given person,
in one trade (for instance specification development or code de-
velopment), should cover a portion of a product, instead of a
portion of technology. This portion of a product should span
all the technological aspects, for instance: database, server-side
code development, graphical user interface, network, and doc-
umentation. If several different programming languages are to
be used, the very same person will be exposed to all of them.
We can refer to this project split as the Functional Division
method, by comparison to the division of labor method, which
uses technological boundaries as cleavage points.

This would please Ralph Waldo Emerson, who criticized the
parcellized society inherited from Adam Smith. He praised the
”Man Thinking” in his famous speech ”The American Scholar”
[16] delivered before the Phi Beta Kappa Society, at Harvard in
August 31st, 1837:

The old fable covers a doctrine ever new and sublime;
that there is One Man, — present to all particular
men only partially, or through one faculty; and that
you must take the whole society to find the whole
man. Man is not a farmer, or a professor, or an en-
gineer, but he is all. Man is priest, and scholar, and
statesman, and producer, and soldier. In the divided
or social state, these functions are parcelled out to
individuals, each of whom aims to do his stint of the
joint work, whilst each other performs his. The fable
implies, that the individual, to possess himself, must

59

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

sometimes return from his own labor to embrace all
the other laborers. But unfortunately, this original
unit, this fountain of power, has been so distributed
to multitudes, has been so minutely subdivided and
peddled out, that it is spilled into drops, and cannot
be gathered. The state of society is one in which the
members have suffered amputation from the trunk,
and strut about so many walking monsters, — a good
finger, a neck, a stomach, an elbow, but never a man.

Man is thus metamorphosed into a thing, into many
things. The planter, who is Man sent out into the
field to gather food, is seldom cheered by any idea of
the true dignity of his ministry. He sees his bushel
and his cart, and nothing beyond, and sinks into the
farmer, instead of Man on the farm. The tradesman
scarcely ever gives an ideal worth to his work, but
is ridden by the routine of his craft, and the soul is
subject to dollars. The priest becomes a form; the
attorney, a statute-book; the mechanic, a machine;
the sailor, a rope of a ship.

In this distribution of functions, the scholar is the
delegated intellect. In the right state, he is, Man
Thinking. In the degenerate state, when the victim
of society, he tends to become a mere thinker, or,
still worse, the parrot of other men’s thinking.

When a person, a Man Thinking, is entrusted with an en-
tire functional subset, his intellectual productivity can deploy
fully, without being hampered by the division of labor. The
most productive endorse larger projects, which do not need to
be subdivided further, and can truly express their productivity,
allowing the organization to have a maximal efficiency.

In an assembly chain, as identified by Taylor, chronometers
must be used to fine tune each trade so that a given person does
not wait or is not waited for too often. Chronometers allow also
to monitor productivity. When minimal specialization is applied

60

1.10. FROM PROGRAMMERS TO DEVELOPERS

in a “mentofacturing”14 activity, given the fact that subprojects
are divided alongside minimal inter personal dependencies, the
potential loss of time is reduced by properly allocating tasks
according to the extent of the task and individual productivity.
When somebody finishes early, he can take a subproject (again
selected with minimal dependencies) from one of his colleagues’
areas, usually a connex one. It leads to a situation where no loss
of time is induced.

When considering the code development activity, we are, as
a consequence, not talking anymore about a programmer . ”Pro-
grammer” was used at the time of labor specialization along
with other software-related job names, so it is itself a trade des-
ignation, which is heavily carrying a division of labor ideology.
The appropriate term should be Developer, as it implies a wider
spectrum of expertise and an extensive responsibility. The word
”programmer” should be banned. Some people try to fight its
negative connotation by insisting on using it, we must wish them
success.

Clearly, only very smart people can become developers. Peo-
ple who were used to being specialized programmers (this is
pleonastic), and who have the ability to become a developer are
scarce. As minimal parcellization of labor is meant for very pro-
ductive people, and only productive people can sustain minimal
parcellization, very selective recruitment which is meant to de-
tect productive people, and organizations implementing minimal
division of labor, are completely interdependent. The very same
idea applies to autonomy. Minimal parcellization pushes for al-
lowing people a great deal of autonomy, and only smart people
can be trusted, and offered this kind of autonomy. The two are
intertwined.

The principle of cutting problems along functionalities ap-
plies not only to a team, but, even more, to entire organiza-
tions. Departments dedicated to a given technology slice should
be avoided, in order to reach a better global efficiency. Again, as
indicated before, having dedicated teams for consistency coordi-

14“mentofacturing” is a neologism, which means made with the mind, by
opposition to “manufacturing”, which comes from made with the hands.

61

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

nation is an option to be considered, if technological frameworks
are not sufficient to ensure the coherence of the solutions.

1.11 Positive consequences of minimal di-
vision of labor

In addition to maximizing productivity, minimal division of la-
bor has a number of advantages. Minimal parcellization allows
jobs with a broader spectrum of expertise to be offered. Only
this makes it possible to keep the smartest, by offering them a
difficult challenge, and the possibility to enrich their skills. Of
course, the more skills people have, the more opportunities they
have to leave the company and easily find another job. The
challenge for the company, as a consequence, is to keep their
personal development at a higher pace than what they would
get in another corporation. Quickly, people have all the possi-
bilities to leave the company, and the company must ensure that
the staff do not feel like doing it.

Being exposed to a variety of technologies is also an excel-
lent way to be resilient over time. We said that software is a
continuous revolution, with brutal discontinuities. Those tech-
nological discontinuities arise regularly, we can, just like a future
earthquake or volcano eruption, even count on them to happen!
Specialized people do not resist well to those discontinuities, and
their adaptation to something new is both difficult and painful,
when it is at all possible. There is, by the way, a moral issue
with the promise that many recruiters make about being able to
propose a long term role to people with small skills. Those will
end up having to switch from IT to the least likely professions,
such as nurse, gardener, or taxi driver. I have personally in mind
the case of the CIO of a large corporation who was fired, never
found back any job in the IT industry, and ended up as a taxi
driver.

Unfortunately, people tend to prefer specialization. It brings
a comfortable situation, if not often a prominent position. Linus
Torvalds, the inventor of Linux, thanks to his experience man-

62

1.11. POSITIVE CONSEQUENCES OF MINIMAL
DIVISION OF LABOR

aging a big team of voluntary people, says the following about
”Kernel Management”:

One thing to look out for is to realize that greatness
in one area does not necessarily translate to other ar-
eas. So you might prod people in specific directions,
but let’s face it, they might be good at what they
do, and suck at everything else. The good news is
that people tend to naturally gravitate back to what
they are good at, so it’s not like you are doing some-
thing irreversible when you do prod them in some
direction, just don’t push too hard.

In order to avoid too much specialization, a manager must
push hard enough.

Avoiding specialization, also allows to avoid technological
fanatism, which is a very frequent syndrom among developer
groups. But we’ll talk about this in the next chapter.

As we saw earlier, minimal division of labor and the inter-
twined recruitment principles allowing it, also create a higher
degree of delegation. Smart people are empowered and keep a
very high motivation. This contributes greatly to staff retention.

Lastly, when a corporation manages diverse project sizes,
with consistent use of technology across projects (this is common
sense, given the economies of scale it brings), developers who
are experienced in minimal dependencies organizations have no
difficulty moving from small size projects to larger ones, as they
are not specialized in a subset of the tools required.

The division of labor is never uniformally applied. If it was,
smaller projects would become very costly, as they would involve
specialized developers and information transfer costs would con-
stitute the majority of the costs. As a consequence, usually,
small projects are managed with non specialized developers,
while specialized developers deal with larger projects. Two pop-
ulations coexist. The ones belonging to the first population can
join the second group, while the second type cannot take care
of small projects because of a lack of skills.

63

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

Organizations which uniformally divide projects with mini-
mal dependencies favor mobility.

1.12 Organization and projects success ra-
tio

It is interesting to note that classical division of labor applied to
software development organizations has a meaningful impact on
projects success ratio. Also, this impact varies depending on the
size of the project. It is obvious that success probability should
slightly decrease for projects which are larger, for a number of
obvious reasons. But as a matter of fact, so many large projects
fail that it exceeds intuition by far. This has always been a
matter of intense debate. The most famous paper on the sub-
ject has been written by Alfred Spector and David Gifford [49],
and is entitled ”Case Study: A Computer Science Perspective
on Bridge Design”. It compares civil engineering of bridges to
software projects development:

Bridges rarely fall down. In contrast, computer sys-
tems design is one of the least classical of the engi-
neering disciplines, and its products are often poorly
understood, unmanageably complex, and unreliable.

The division of labor is an organization we are all used to.
Actually it is the only one that comes naturally to mind. It
is not a natural one, and was pretty ”out of the box” when
Adam Smith proposed it during the middle of the eighteenth
century. Unfortunately, when applied to software projects, it
asphyxiates them. Figure 1.7 highlights this. It is extracted from
the CHAOS research, a yearly report by The Standish Group.
This report has always been the object of an intense and heated
debate, because a lot of people question its authenticity. It is
indeed quite shocking. If you believe it, you do not start a
significant software project. The Standish Group is rather silent
on its methodology and no peer reviews exist. Nevertheless, it
is worth a look with a healthy doubt. It is true that experience

64

1.12. ORGANIZATION AND PROJECTS SUCCESS RATIO

0 2 4 6 8 10 12 14 16 18 20
Project cost in M$

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Success probability

Figure 1.7: Project success probability as a function of project
size. Source of data: The Standish Group International, Inc.
CHAOS 1999 research.

confirms that the larger the projects, the bigger the risks of
failure, and in a quite steep manner.

Even in the small projects area, which is the leftmost part of
the curve, the chances for success are rapidly very low, simply
because the project collapses under practical linear and expo-
nential efforts (see sections 1.9.1 and 1.9.2).

For zero size projects, obviously, all project division tech-
niques have a sucess probability of 100%. The curves coincide.

Starting from the leftmost part, and going to the right, the
curves at first are very similar. Single person projects behave
exactly the same. Later on, for multi persons projects of a small
size, the division of labor starts dropping immediately. For small
projects, people are in the same office, and dependencies do not

65

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

translate into costs which are too high. Soon, for bigger projects,
people are scattered on an entire floor, then entire building, and
in extreme cases, throughout different geographies, and poten-
tially the entire world. The success ratio of the division of labor
is deeply affected by these unavoidable phenomenons. Func-
tional division is also impacted by the risks undertaken in larger
projects, but in a milder manner.

Functional division evolves smoothly, for the simple reason
that it promotes splitting projects into subprojects. The proba-
bility of success is the combination of smaller size project prob-
abilities, affected only in a light manner by some dependencies.
Each person takes care of a variety of technologies, like in craft
industries (see page 43). The organization morphs smoothly
from small to very large projects. So does the probability chart.
In addition, the type of personnel employed in the two organiza-
tions is drastically different, allowing for a higher success ratio in
the case of functional division. The division of labor introduces
a discontinuity in the organization. When projects are small,
they are handled by a single person doing all, and when larger
projects are to be divided, each person is attached to a tool,
and the split over different people is suddenly done in a different
way.

1.13 In search of the exceptional man

In a nutshell, given what was said in the former part of the docu-
ment, it is necessary to look for exceptional people, what Taylor
himself designated as the ”Exceptional Man”. The title of this
section is intentionally reusing the same expression. Nowadays,
to be politically correct, and to avoid sounding sexist, I should
have used ”Exceptional person”...

Why isn’t the need to search for exceptional persons acknowl-
edged more widely? There are very old barriers against that,
including from Adam Smith himself.

Thirty five years before the Wealth of Nations was first pub-
lished, in 1741, the danish satirical author Ludvig de Holberg
published a story, in latin, called ”Nicolai Klimii Iter Subterraneum”[25],

66

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

which stands for ”The subterranean journey of Nicholas Klim”.
In this book, Holberg’s hero, Nicholas Klim, falls into a sub-
terranean world, where he meets the utopian nation of Potua,
formed by apathic creatures half human half tree. As a conse-
quence, their culture makes the apology of slowness, and they
condemn rapid pace of thoughts. Holger wanted to criticize some
of his contemporaries who preferred immobility to velocity.

As for Adam Smith, in order to help justify his thesis, and
probably for ideological or moral reasons, he insisted on the fact
that natural talents are of small importance. In the Wealth
of Nations, he tried repeatedly to minimize natural individual
discrepancies. Let us go back to the text:

The difference of natural talents in different men, is,
in reality, much less than we are aware of; and the
very different genius which appears to distinguish
men of different professions, when grown up to ma-
turity, is not upon many occasions so much the cause,
as the effect of the division of labor. The difference
between the most dissimilar characters, between a
philosopher and a common street porter, for exam-
ple, seems to arise not so much from nature, as from
habit, custom, and education.

Examples are numerous, here is another one (he did not seem
to like philosophers very much... Actually, he taught philosophy,
so it must rather be interpreted as modesty):

By nature a philosopher is not in genius and dis-
position half so different from a street porter, as a
mastiff is from a grey-hound, or a grey-hound from
a spaniel, or this last from a shepherd’s dog.

He sporadically acknowledges that superior talents exist, but
he is still very uneasy with that, as shown here (now he likes
philosophers):

The over-weening conceit which the greater part of
men have of their own abilities, is an ancient evil

67

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

remarked by the philosophers and moralists of all
ages.

After all, Adam Smith, before publishing the Wealth of Na-
tions, was professor of moral philosophy at Glasgow University.

Frederick Taylor, in contrast, states initially that instead
of desperately searching for the exceptional man, corporations
should rather revise a few of their principles for managing their
staff. However, he clearly indicates that exceptional men are
even more necessary with his proposals. He even openly talks
about carefully selecting employees.

Knuth, who reported a small 2% of his students being able
to groove at programming, feels like balancing this statement
with the following:

I don’t look at it as a matter of one person being
better than another. Some people are simply going
to be able to write much better code, but their code
isn’t necessarily going to be the better system for
someone who doesn’t think like the programmer.

In modern times, the perception with respect to smart peo-
ple has evolved, especially among software professionals. But a
lot of contrast exists between professionals and the rest of the
world. Thielen, an ex-Microsoft employee, highlights that when
he publicly explains that the quality of the employee drastically
changes productivity, this is often met with open hostility . He
gives two explanations: the role of the manager needs to be
redefined and the manager is no longer in control, while the
employees are.

The range of reasons which restrain people from recruiting
smart employees is even more complex:

1. Traditional organizations need to be revisited, both to
adapt the role of management and to ensure that processes
are adapted to not hampering highly productive people.

2. Managers are afraid to loose their job if they recruit people
smarter than themselves.

68

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

3. There is a wrong perception that recruiting very smart
people will create career management issues. Retention of
staff appears difficult in the mid or long term.

4. ”Elite” in software is often synonymous to hacker.

5. As indicated by Randall Stross [50], there is a rampant
anti-intellectualism that does not shed a positive light on
particularly smart people.

6. Rewarding people on the base of their more or less natural
intellectual abilities, raises a moral issue.

1.13.1 Reforming organizations

Organization is the least easy to change parameter in a com-
pany. People get used to their role, and try to reproduce it
constantly. When the organization changes, especially when it
deeply reforms people’s roles, a very high level of inertia or even
resistance is to be expected.

As we saw earlier, minimal parcellization pushes for delega-
tion. This pushes to revisit the role of management. Instead of
naively applying the army model of management, with people
executing their task, people endorsing managerial responsibility
have to learn how to deal with a high level of autonomy from
their staff. The ethymology of the word ”execution” is, by the
way, interesting, as it comes from the latin word exsequi , which
means ”follow”. Productive people are not followers, they are
all leaders of change and innovation. This is why they usually
clash with traditional management style.

Minimal division of labor is also extremely demanding for
managers, as they should not evolve into administrative per-
sonnel, and must be capable of ”riding the bull”, while keeping
the right level of control and decision-making, necessary for the
success of the projects.

69

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

1.13.2 Job protection

Linus Torvalds, who is the head of the group maintaining Linux,
his own initial invention, says in a document on ”Kernel Manage-
ment”: ”Some people react badly to smart people. Others take
advantage of them”. This is an excellent summary. However, he
is slightly wrong, and overestimates most of the managers. Ac-
tually, most people react badly to smart people. Also, ”taking
advantage” is not a very positive expression, but in any case, it
is a very striking statement. Linus certainly has a very accurate
feeling about managing smart people, simply because nothing
can be more difficult to manage than a team of independent
smart people contributing voluntarily to free software.

Productive people are found among the smartest ones. What
is feared most by a manager recruiting staff? Instead of — le-
gitimately — being afraid to fail their project, a manager usu-
ally fears being endangered by people smart enough to challenge
them, or potentially have greater ideas than theirs. This is why
job protection is one of the strongest factors which fight against
minimal parcellization. This factor explains in part the rea-
son why classical manufacturing organizations are desperately
enforced by many managers in software organizations, because
they would hate to recognize interpersonal productivity discrep-
ancies. The best people simply compensate for the worst ones
the way they can, given the organizational constraints they are
forced to obey.

One of the other consequences of job protection is the ”rot-
ting branch”, or “bozo explosion” syndrom. Not so smart man-
agers recruit even less smart subordinates, who in turn hire even
worse staff. The hierachical line is like a branch, which rots down
to the leaf. Former Apple evangelist, Guy Kawasaki, says about
his former boss, Steve Jobs:

Actually, Steve believed that A players hire A players
— that is people who are as good as they are. I
refined this slightly — my theory is that A players
hire people even better than themselves. It’s clear,
though, that B players hire C players so they can feel

70

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

superior to them, and C players hire D players. If
you start hiring B players, expect what Steve called
“the bozo explosion” to happen in your organization.

Controlling that the branch does not rot, and helping man-
agers to remain secure and feel safe while recruiting very smart
individuals is a very important aspect of corporations who de-
liver intellectual services. Working with brilliant people is a
reward of all moments, as Bill Gates underlines it frequently.
This is one of the reasons why the richest man on earth remains
very motivated.

Linus Torvalds, the original author of Linux, has a interesting
piece of advice about managing bright people:

So when you find somebody smarter than you are,
just coast along. Your management responsibilities
largely become ones of saying

”Sounds like a good idea— go wild”, or ”That sounds
good, but what about xxx?”. The second version in
particular is a great way either to learn something
new about ”xxx” or seem extra managerial by point-
ing out something the smarter person hadn’t thought
about. In either case, you win.

And about fighting the feeling of uneasiness managers get
about their legitimacy, that even himself obviously felt:

First off, while you may or may not get screaming
teenage girls (or boys, let’s not be judgmental or sex-
ist here) knocking on your dressing room door, you
will get an immense feeling of personal accomplish-
ment for being ”in charge”. Never mind the fact that
you’re really leading by trying to keep up with ev-
erybody else and running after them as fast as you
can. Everybody will still think you’re the person in
charge.

It’s a great job if you can hack it.

71

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

1.13.3 Retention and career management issues

When recruiting brilliant people, you can expect to face a num-
ber of expectations, either in terms of reward, or in terms of
career deployment. These expectations, combined with an un-
usual density of talents, seems to produce a difficult situation
where you cannot reward everybody, and not everybody can
access managerial positions.

Brilliant people create brilliant solutions, and if the remain-
der of the organization is able to take benefit from it, by aiming
valuable markets and by succeeding in selling at a good price,
reward to everybody is not an issue.

Now, about career management, the answer is more subtle.
Let us take the opposite situation to set everything clear. If low
profile people are recruited, they will fail to deliver a number
of projects. Some of the projects delivered will look so bad,
that customers will complain. Your competition will certainly
recruit smart people, and you will fall inexorably into slow or
quick business shrinkage.

If very talented people are recruited, with an excellent pro-
ductivity, all projects will be delivered and they will exceed cus-
tomers’ needs. More customers will be attracted, because thanks
to your average staff productivity, prices will be kept low. Your
business will grow exponentially, and career management will
not be an issue anymore. Actually, it can be, as I experience
it regularly, the other way around, that is that the business is
growing so fast, that the company cannot find internally enough
people sufficiently experienced to fill the open positions.

In case not everything goes well, in spite of having recruited
superb developers, business is not always growing. This can be
due for instance to the fact that the targeted market does not
react positively to the solutions proposed, or because your sales
and negotiation power is sub-standard. The only consequence,
which is heart breaking but not that harmful for the company,
will be that you’ll have to release part of your staff. They will
have no difficulty whatsoever to find another job, given their
abilities. Their time spent in the company will have drastically

72

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

risen their abilities, because brilliant people learn more when
they are among other brilliant people. You must however be
careful that the best do not leave while the mediocre remain.
Or do not hire any mediocre staff...

In any case, given everything which was said about recruiting
smart people, it becomes clear your staff is an important part of
your capital. Many corporations state this only with a tongue
in the cheek. They should be convinced of that, because smart
people cannot easily be deceived! If the staff is your capital, you
have to take care of it, for the company’s benefit, which happens
to be the staff’s benefit too. For instance, excellent training
must be provided. And the very same rule to avoid focusing
primarily on salaries, but rather on productivity, applies again
on trainers. The productivity of a trainer is even more difficult to
assess during a training than productivity of a developer during
a project. But it is obvious that extraordinary discrepancies
exist between one trainer and another one. Usually, the best
trainer is the most cost effective. As a consequence, looking
for the very best trainers should become an obsession for the
company.

Knowing that your staff is your capital should also push to
establish an unlimited budget for books. Of course, this may
scare your finance department, but from experience, I know that,
in practice, this is not a source of huge expenditures. And a few
ten dollars do not matter when compared to a few hours lost
because the information was not readily available. Books must
be in unlimited supply, not only to be useful within the technical
scope of the day to day activities, but they should be accessible
even for the sake of developers’ general technical culture. We
have to remember that the drastic reduction of trades turns
developers into personnel who must have a broad technological
culture. Allowing them to read books on technologies which are
not contemplated for immediate use is precious.

All this contributes also to staff retention. On top of all this,
reward must be fair. To many people, who have a ”trade” view
of developers and ignore productivity discrepancies, a developer
position is a job which is ”filled” or ”not filled” by individuals,

73

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

in a binary logic manner. This is an enormous mistake and does
not lead to a fair rewarding structure. The productivity discrep-
ancies, which are used, must be acknowledged by the company,
in some way or another. This means adapting bonuses in a way
which allows discrepancies, and allowing for career development
based on the real potential of the individuals.

1.13.4 Elite as a synonym to hacker

The word ”hacker” did not initially refer to any truly criminal
activity, only a very fuzzy sense of rules, combined with a tech-
nical passion justifying it. The word became gradually used for
a very wide range of people, including some belonging to the
extreme end of the spectrum, with criminal intents. Nowadays,
hacking is fully equated to criminal activity in the public’s mind.
At the same time, as an inheritance of the past, hackers are of-
ten referred to as geniuses. The perverted fascination the public
has for hackers and the publications related to them [31, 37] has
placed them as modern dark idols.

Even among organized hacker groups, drastic selection was
commonplace, as Bill Landreth [31] reports. The Inner Circle
is one of the cyber criminal groups which reached fame.

Referring to oneself as a member of an élite, as a hacker,
is now part of common hackers’ slang probably since the 80s,
in bulletin board systems. Between hackers, the word élite is
often ciphered, and replaced by: Eleet, leetspeak, leetspeek, l33t,
31337, or 1337. 1337 is even used as a TCP/IP port number in
a number of pieces of software.

This association between very smart people and piracy does
not contribute favorably to the idea of forming serious industrial
teams with very talented people.

On the other hand, hackers, sometimes for selfish reasons
without any relation to philanthropy, have contributed to tremen-
dous software breakthroughs. One of their main feats is the cre-
ation of the time sharing concept (Bob Bemer, also known as
the inventor of ASCII) which is used by everybody now. Steven
Levy explains it at length [32]. Similarly, a continuous chain of

74

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

innovation can be identified between the hacking of phone lines
by Capt’n Crunch, the blue boxes allowing this hack, the elec-
tronic setup Steve Wozniak invented for them, and the video
circuitry timers that he inserted in the Apple II.

Hence, hackers should not be considered merely as immature
criminals, and smart people are not always cybercriminals.

1.13.5 Anti-intellectualism

Anti-intellectualism in the American psyche was pinpointed in
the sixties by the American historian Richard Hofstadter, in the
now classic ”Anti-Intellectualism in American Life” [24]. He
won the Pulitzer Prize for the combination of this and a former
opus, ”The Age of Reform”. Hofstadter remarked that practical,
pragmatic and functional knowledge were praised over intellec-
tual and abstract abilities, leading to the ideal of the ”common
man” versus an educated elite.

Anti-intellectualism is nothing new, and tracks of it can be
found many centuries ago. Yingzheng of Qin, the first emperor
who united China, who came to the throne in 246BC, burnt
books and buried intellectuals alive as he considered they were
a potential threat to his administration.

In 1642, the New England puritan writer John Cotton wrote
”The more learned and witty you bee, the more fit to act for
Satan will you bee.”.

Anti-intellectualism has increased during the last third of the
twentieth century in America, and to a lesser extent in other
parts of the world.

An interesting analysis can be made on the acceptation of
the word ”elitism”. Up to the last third of the twentieth century,
elitism was a positive term, sometimes associated with the word
”republican” (republican elitism). During the last third of the
twentieth century, it became pejorative. Few people remember
that elitism related to rewarding merit, and was an idea pushed
by revolutionaries. This concept became ultimately a republican
value. It was one of the aspects of ”equality” (implicitely of
chances).

75

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

The French expression ”la carrière ouverte aux talents” (ca-
reer open to those with talents), brought by French revolution,
was fighting the idea that some positions would be obtained
with money, network or simply because of being born in an
aristocratic family. Before the revolution, to become corvette
captain, one had to belong to established nobility. The revolu-
tionary expression was later echoed by Napoléon Bonaparte.

Anti-intellectualism is actually both a threat and an op-
portunity for the software industry. Randall Stross [50] elab-
orates on the negative side of it, stating that the level of hatred
that Microsoft has generated towards itself owes a lot to anti-
intellectualism. It must be underlined that it has also been Mi-
crosoft’s opportunity, because not so many recruiters are tempted
to recruit the top 5%. Surprisingly, there was never fierce com-
petition to attract them, who are by definition in very limited
supply. This does not only hold for the United States, but for
Europe as well, in spite of a lower level of anti-intellectualism.

To be perfectly fair, among people having a very strong affin-
ity with abstract matters, a lot of variety can be found. To some
extent, the education system which imposes a pitiless selection
on individuals, does not even fully satisfy the needs of the soft-
ware industry. The nature of software development, with the
analytical skills and mathematical rigour it requires, pushes for
recruiting among people who have made brilliant scientific stud-
ies, especially in mathematics. Unfortunately, scientific studies
usually do not select people on their creativity. Rather, they are
selected on the ability to:

• Resolve a tough problem which is exhaustively formulated
for them, all input being necessary;

• Work by relying only on their memory and often without
any documentation;

• Manage their task by themselves;

• Perform in a very limited time, which is dictated to them;

76

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

Actually, the real world of the software industry is obeying
the following, very different rules:

• The problem is never formulated completely and the peo-
ple are asked to contribute to the formulation before re-
solving it. The problems to resolve are often incomplete,
and the information gathered often contradictory.

• All documentation available can usually be obtained.

• Most of the tasks are done in groups, and the ability to be
accepted and fruitful as a team member is key.

• You are consulted to evaluate the amount of time neces-
sary.

More generally, students are taught to identify faster and
faster patterns they have been presented during formal lectures.
Pattern matching and creativity are two complementary abili-
ties, both equally interesting in the software business.

The gap between the actual needs of the software industry
and the educational system, which is, in this instance, more im-
portant in Europe than in the United States, could be partly
resolved, only by ”changing the rules” very slightly. For exam-
ple, by breaking the sacred law of science education and problem
solving, and proposing problems with extra unneeded data, it
would be far more difficult for students. It is absolutely obvious
that with this very tiny change, the ranks of the students would
change meaningfully.

A funny example, used as a riddle for kids is the following:
”Three crows are on a branch, a hunter comes and shoots one,
how many crows left on the branch?”. Such a question is often
answered ”2”, instead of 0. Even, some science students, eager
to answer fast, and influenced by years of study, would certainly
answer 2. The fact is that the number 3 in the riddle is not
necessary, it could be 5 or 7. When the hunter shoots, the
remaining crows all fly away... Even the number of crows killed
is not necessary to solve the riddle. The hunter could miss its
target, no crows would be left anyway. Unconsciously, we all try

77

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

to find a use for the numbers 3 and 1 in the riddle. The only
sensible use we find is to decrement the number 3. This is even
more the case after years of practicing theoretical problems and
having one’s brain ”shaped” by these problems.

Many riddles of the same kind as the ”crow riddle” exist,
which are much more sophisticated, with trains, speeds etc.
Many are even used by Microsoft as a tool to select candidates.
This practice is useful to compensate the deficiency of the educa-
tion system in selecting individuals on their creativity. Real life
is closer to the ”crow riddle” than they are to math problems.

Having said that, there are many kinds of brilliant people.
Some would be more inclined to spend 20 years trying to prove
one of Fermat’s conjectures. While this is perfectly respectable,
and even admirable when it succeeds (cf. the marvellous work of
Andrew Wiles), this inclination is in no way compatible with the
requirements of software production. Brilliant people must also
clearly be very practical, and willing to deliver from a quantita-
tive standpoint, not just theoretical. Xerox Parc is an example
of an organization which greatly contributed to computing, but
globally in a very inefficient, and frequently too theoretical way.

It is important to note as well that being practical is also
not sufficient in itself...

1.13.6 The moral issue

As a general and inexorable trend, the industry is moving to
intellectual services, away from the Industrial Age and classical
manufacturing dominated by trades. The fact that inter per-
sonal productivity ratios vary so greatly among all intellectual
activities, indicates too clearly that the inequalities of rewards
will owe a lot to natural abilities rather than merit. Addition-
ally, software development is such a revolutionary activity that
it resembles a tornado. It breaks organizations, reshuffles them,
and has no pity for established practices. This is both beneficial
to the businesses through increased automation, and detrimental
to many people for putting hoards of them out of a job.

Believe it or not, there are examples of user companies,

78

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

which, after a successful implementation of a software solution,
do not readapt their organization, and keep some of their elder
staff doing their previous task, without telling them that this
task has been automated, and that, after their intervention, the
system will automatically redo it all.

Revolution is so intrinsically related to software development
that it even applies in the most acute manner, to the software
industry itself. Thielen [55] quotes Chris Peters, the former head
of Excel development at Microsoft:

We didn’t write Excel to make money, we wrote it
for the sheer joy of putting the largest computer soft-
ware company out of business.

This statement is rather faithful to the general mindset in
which successful software companies are, for excellent reasons,
but is also absolutely shocking.

This mix between necessity and ethical issues is not new.
The division of labor satisfied Adam Smith’s moral system, be-
cause it was a way to offer work to anybody ready to work
hard. It maximized the ability of a society to employ every-
body, showing that the division of labor reflected God’s will,
who created the world with a role to play for all souls. In that
sense, Smith, professor of moral philosophy at the University of
Glasgow, was a Christian Humanist. The Christian Humanist
school of thought lasted to this day. Peter Drucker (1909 —
2005), for instance, was also a Christian Humanist, and he is
known, among several contributions, as the inventor of manage-
ment by objective, and as the one who coined in the expres-
sion ”knowledge worker”. The refusal to admit or report that
modern companies merely turn intelligence into profit (software
or other technologies being secondary to that higher principle),
testifies of his belonging to the long line of Christian thinkers.
We should resist the temptation to see hypocrisy in the expres-
sion ”knowledge worker” which presents mankind as a set of
(implicitely more or less equivalent) empty bottles ready to be
filled with information, and which, once full, will be available to
regurgitate it. Drucker’s generous ideology prevents him to see

79

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

the harsher nature of dissimilarity between employees, and the
fact that knowledge without intelligence, like raw data without
processing, is worth exactly nothing today.

The same thing may be said of the gross ignorance
and stupidity which, in a civilized society, seem so
frequently to benumb the understandings of all the
inferior ranks of people. A man without the proper
use of the intellectual faculties of a man, is, if pos-
sible, more contemptible than even a coward, and
seems to be mutilated and deformed in a still more
essential part of the character of human nature.
Though the state was to derive no advantage from
the instruction of the inferior ranks of people, it
would still deserve its attention that they should not
be altogether uninstructed. The state, however, de-
rives no inconsiderable advantage from their instruc-
tion. The more they are instructed, the less liable
they are to the delusions of enthusiasm and supersti-
tion, which, among ignorant nations frequently occa-
sion the most dreadful disorders. An instructed and
intelligent people, besides, are always more decent
and orderly than an ignorant and stupid one. They
feel themselves, each individually, more respectable,
and more likely to obtain the respect of their lawful
superiors, and they are, therefore, more disposed to
respect those superiors.

Who could have written such a cynical text, separating knowl-
edge and intelligence, admitting inequality as fact, and assuming
that there are higher and inferior ranks of people? Adam Smith
himself, in the Wealth of Nations... The same one who wrote
that there was little difference between a philosopher and a street
porter.

The discrepancy between the generous theory and hard re-
ality is very well known today in the case of manufacturing in-
dustries. Unfortunately, turning people into ”instruments”, as
shown by Charlie Chaplin in ”Modern Times”, eventually raises

80

1.13. IN SEARCH OF THE EXCEPTIONAL MAN

very significant ethical issues. Additionally, the division of labor
gave birth to Taylorism, with an over zealous use of chronome-
ters and productivity measurements, which literally killed a lot
of people by putting too much pressure on them. Anyway, much
before Taylor, Adam Smith was very well aware of this discrep-
ancy, and, in his writings, criticized his own division of labour:

In the progress of the division of labour, the em-
ployment of the far greater part of those who live
by labour, that is, of the great body of the people,
comes to be confined to a few very simple operations;
frequently to one or two. But the understandings of
the greater part of men are necessarily formed by
their ordinary employments. The man whose whole
life is spent in performing a few simple operations, of
which the effects, too, are perhaps always the same,
or very nearly the same, has no occasion to exert his
understanding, or to exercise his invention, in finding
out expedients for removing difficulties which never
occur. He naturally loses, therefore, the habit of such
exertion, and generally becomes as stupid and igno-
rant as it is possible for a human creature to become.
The torpor of his mind renders him not only inca-
pable of relishing or bearing a part in any rational
conversation, but of conceiving any generous, noble,
or tender sentiment, and consequently of forming any
just judgment concerning many even of the ordinary
duties of private life. Of the great and extensive
interests of his country he is altogether incapable
of judging; and unless very particular pains have
been taken to render him otherwise, he is equally
incapable of defending his country in war. The uni-
formity of his stationary life naturally corrupts the
courage of his mind, and makes him regard, with
abhorrence, the irregular, uncertain, and adventur-
ous life of a soldier. It corrupts even the activity of
his body, and renders him incapable of exerting his

81

CHAPTER 1. FROM MANUFACTURING TO
MENTOFACTURING

strength with vigour and perseverance in any other
employment, than that to which he has been bred.
His dexterity at his own particular trade seems, in
this manner, to be acquired at the expense of his in-
tellectual, social, and martial virtues. But in every
improved and civilized society, this is the state into
which the labouring poor, that is, the great body of
the people, must necessarily fall, unless government
takes some pains to prevent it.

Today, talking about recruiting the ”top 5%” sounds un-
avoidably very close to a selection of ”better people”, reminding
of dark times, Nazism, and their Lebensborns. The fact that we
already entered the Information Age, and its combination with
salutary competition, pushes corporations to be more efficient,
and to fight for attracting the most productive people. This
certainly raises a question mark on the ultimate shape of our
society, and the social utility of this trend. The answer is far
from obvious.

82

Chapter 2

Peculiar people for a
peculiar world

Pick up that piece of paper Marvin,
that’s what they say to me.

Here I am, brain the size of a planet,
and they ask me to pick up a piece of paper.

Robot Marvin,
in ”The Restaurant at the End of the Universe”,

by Douglas Adams

In the former chapter, I have extensively used vague expres-
sions such as ”smart”, ”superb”, ”brilliant”, ”high quality”, ”ex-
ceptional” to refer to the type of staff a software organization
should recruit... What do I mean exactly? Are we talking about
intelligence? IQ? Something else? The goal of this chapter is to
shed some light on this.

We have to remember Knuth’s mysterious comment of indi-
vidual discrepancies in software development:

I don’t look at it as a matter of one person being
better than another. Some people are simply going
to be able to write much better code, but their code
isn’t necessarily going to be the better system for
someone who doesn’t think like the programmer.

83

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

To start with, we are going to study the author of these
words, Donald Ervin Knuth, who happens to be the most typi-
cal, while certainly most extreme, of developers. We’ll continue
to clarify what was meant by ”smart people” in the remainder
of the chapter, and some risks related to them.

2.1 Donald Ervin Knuth

Donald Knuth is the undisputed greatest computer scientist
alive, and one of the greatest ever, if not the greatest. He can ar-
guably also be listed among the very best developers this world
has known. He is a very interesting case for a study on the type
of people software attracts and, certainly, shapes.

2.1.1 One hexadecimal dollar

Donald Knuth is, to computer science, the modern equivalent
of Denis Diderot, the famous XVIIIth century Encyclopaedist.
He holds a Ph.D in mathematics on the very casual and mun-
dane subject of Finite semifields and projective planes. He is
better known as the author of The Art of Computer Program-
ming1, the gigantic encyclopaedia on algorithms he started pub-
lishing in 1968 (217 years after Diderot...). He is still working
on the much anticipated fourth volume. His contribution to
software engineering through his books was such that he was
appointed Professor Emeritus of the Art of Computer Program-
ming at Stanford University, a title created exclusively for him.
Somehow, he went much further than Diderot, and did not only
collect algorithms created by others. He actually invented an
incredible amount of algorithms. This is true to the point that
all pieces of software available today, use, or required to be con-
structed, at least one algorithm invented by Knuth, or derived
from one of them. Nothing less.

There are lots of passionating sides to Professor Knuth’s life,
but we are going to concentrate on what he calls himself his

1Known as ”TAOCP”.

84

2.1. DONALD ERVIN KNUTH

peculiar way of thinking. This way of thinking testifies in a
very acute manner of the very special and queer twist of mind
that excellent software developers have. This twist of mind is
such that, to people who have not been exposed to software
development, diving into it may feel like a very unsettling or even
unpleasant, if not painful experience. Somehow, the amount of
nausea you can feel measures how far you are from a developer’s
mind.

When he was a kid, Donald entered a competition which was
organized by the confectionary manufacturer Ziegler. The goal
was to devise how many words could be made with the letters
of ”Ziegler’s Giant Bar”. Knuth, at that time, was already a
very bright schoolboy, and his peculiar spectrum of interest at-
tracted him to this intellectual challenge. Pretending to be ill,
he actively worked, and came up with 4500 words. Ziegler had
only come to 2500, and he won the contest. His school received
a brand new television set.

After starting his work on his gigantic encyclopaedia, he no-
ticed how dissatisfied he was with the typesetting solutions he
had access to. He quickly realized that the sophisticated kind of
typesetting he expected was a job that could be endorsed by a
computer, and that very interesting scientific issues could be de-
rived from analyzing typesetting from an algorithmic angle. He
therefore started working on a typesetting program that would
become TEX. TEX is still one of the major pieces of software still
being used for publishing technical reports, articles and books
in the academic world. The document you are currently reading
has been typeset using a superset of TEX called LATEX (for LAm-
port TEX, Leslie Lamport being the initial author of LATEX).

In order to understand the incredible level of detail reached
by Knuth, a small parenthesis is necessary. First you need to
learn what a ”river” is. In documents typeset using classical
text editors, paragraphs usually contain series of spaces which
frequently, by chance, are vertically aligned, and look like small
”rivers”. You probably never noticed them. Now look at this
text, you will not find any meaningful one. Knuth produced an
algorithm allowing to avoid them. This tells you of a lot about

85

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Figure 2.1: The Art of Computer Programming, volumes 1, 2
and 3.

the kind of details Knuth is concerned about. You will now
notice rivers in deficient typesetting programs...

But the story is only beginning. Most of it is still to be told.
Don Knuth actually went much further. In order to typeset
a text, you need to display characters. These characters are
drawn by a program, and the shape of these characters can be
modeled through mathematical objects. He decided to go into
further details, and design a program which would allow to draw
fonts. He decided to use a scientific approach to that. His energy
turned temporarily to another piece of software, necessary to
produce the very high quality fonts he expected to deliver. This
software was MetaFont. You certainly never wondered what
family of curves could best allow to describe nice fonts? Knuth
used a sub family of Bézier curves, namely the cubic ones. If
you look carefully at the characters used to print this text, they
have been drawn using cubic Bézier curves.

86

2.1. DONALD ERVIN KNUTH

Of course, with time, the shape taken by some symbols has
evolved. The case of the Greek delta glyph is the most interest-
ing. Two versions exist, the older one, and the final one.

Figure 2.2: The first version of the Greek letter delta.

Figure 2.3: The final version of the Greek letter delta.

Knuth dedicated an entire page on the web to the two ver-
sions of the delta glyph. With his usual mix of humorous and
serious tone, he comments the situation as follows:

For the Greek lowercase delta, you should tell your
system administrator immediately to upgrade your
obsolete version of the Computer Modern fonts.

I made important corrections to all those fonts in
the spring of 1992, but alas, I still see many books,
journals, and preprints using the old versions. Please
help me abolish the old forms from the typefaces of
the earth.

87

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Many characters were improved in 1992 [. . .] but
most of the changes are rather subtle compared to
the dramatic improvement in the lowercase delta. In
fact, the old delta was so ugly, I couldn’t stand to
write papers using that symbol; now I can’t stand to
read papers that still do use it.

When Knuth talks about abolishing the old form from the
”typefaces of the earth”, he is of course using a joking tone. But
when he says that he could not stand to write papers using the
former symbol, and that he cannot stand to read other people’s
papers using it, I am convinced he is extremely serious. Now,
a proof that this document is well formatted using the proper
delta glyph, defined with ”perfect” cubic Bézier curves: δ. Or
maybe you cannot make the difference? Don Knuth would.

When MetaFont and TEX were completed, Knuth was very
concerned by possible bugs in his code. He made a formal proof
of his code, and, as this was not sufficient, he published the
following warning, formulated on a joking tone:

Beware of bugs in the above code: I have only proved
it correct, not tried it.

Knuth is always extremely serious and constantly joking.
The first twist of mind is probably only sustainable with the
second. As an early example of humor, Knuth published his
first science article in a school magazine in 1957 under the title
”Potrzebie System of Weights and Measures”. In that article,
he defined the fundamental unit of length as the thickness of
MAD magazine #26, and named the fundamental unit of force
”whatmeworry”. This article was eventually bought by MAD
magazine and published in the June 1957 issue.

Knuth is more famous for his $2.56 checks. He used to pro-
pose such a check for the first bug reports on TEX, during the
first year. Year after year, he proposed to double the amount,
making a bet that he would be able to afford the exponential
growth of the reward2 . He extended the reward to errors found

2This exponential growth is a reference to the famous legend of the grain

88

2.1. DONALD ERVIN KNUTH

in TAOCP. It is a fact that very few checks were distributed,
and on top, very few of them were cashed. They were rather
framed or kept safely, as a bounty more valuable than the face
value of the check. But, by the way, why $2.56 checks? Why this
special amount? Simply because 256 cents is one hexadecimal
dollar3 ...

Figure 2.4: One of Knuth $2.56 legendary checks. This one is
for Yates Arthur Keir.

Now, back to inexorable precision, Knuth makes numerous
references to other people’s works in TAOCP. There is no un-
ambiguous way to refer to a given person. Homonyms exist. He
insists on mentioning not only the first and family names, but
also the second name, at best, usually found as a single initial.
Knuth has spent considerable efforts to find complete names for
the people he refers to. A few of them escaped him, because
they cannot be contacted anymore. This does not satisfy Don
Knuth. He has published the complete list of those ”incomplete”
people on his home page. He offers a $2.56 reward to anybody
able to find a missing middle name, and to prove he has not

of wheat and the chess board. In this legend, a king promised to give as
many grains of wheat as a chess board could contain, by starting with one
grain on the first square, two on the second, and doubling at each square.
This exponentially growing amount exceeded very fast the entire wealth of
the country.

3One dollar is 100 cents and 100 in hexadecimal is 256.

89

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

made it up. And there are people insane enough to actually
help Knuth find these missing names! I am one of them, happy
enough to have obtained a $2.56 check from Don Knuth, after
several hours spent on Google. A copy of my check can be found
as an illustration. Unfortunately, when I sent the information
to Don, he did not know anymore why he was looking for that
person... He wrote to me that he would gladly give me another
$2.56 check if I found why he was interested by that person. In
spite of this, as a very serious person, he sent me the promised
check... To date, I have not been able to find why Don Knuth
was looking for that person, although I have a faint clue.

Now you understand why Knuth’s middle name is typeset in
italics in the title of this section... You never know, there could
be a homonym for Don Knuth...

Now, professor Knuth considers his work on typesetting com-
plete. He has published a set of books on the subject, the ”Com-
puters & Typesetting”, published by Addison-Wesley [30]. But,
the check business is not over. What happened in the unavoid-
able situations where the recipients of the checks did not receive
them, and they were returned by the post office to Don Knuth?
This situation is not one that would satisfy Don’s peculiar way
of thinking, as you guess. He has set a list of these people on his
home page, and he asks the world community to help him find
them, so that the check can properly be delivered. Guess what
is the reward to help him? Do you believe he is joking? I can
tell you he is not, you can try.

All of the above makes a lot of sense for a computer scientist
or a developer. Having a ”reject queue” is a very standard way
to cope with errors. To somebody who has never been in the
software business, it sounds like a very painful story. At this
point, you realize now that ”peculiar way of thinking” is only
a mild description of Knuth’s thinking process. But remember
how much we owe all to Don Knuth... His twist of mind was
absolutely necessary.

To be a little bit more complete, there is more. The following
does not have anything to do with 1 hexadecimal dollar, but with
the square root of 10!

90

2.1. DONALD ERVIN KNUTH

2.1.2 3.16 or
√
10

We are far from having exhausted the Don Knuth ”case”, even
from the ”peculiar way of thinking” standpoint. This document
will certainly not succeed in doing it. But a little bit more needs
to be reported.

Don Knuth is professor of computer science at Stanford.
When students were submitting the result of their work to him,
it usually constituted a huge number of source codes, spread
over numerous printed pages. There was no other way for Don
Knuth, but to make a selection of a subset of those pages, and
study them carefully, to come up with a reasonable opinion on
the quality of the work, in a reasonable amount of time. Knuth
chose these pages at random, knowing perfectly well that ran-
dom algorithms are sometimes the only ones capable of resolving
a problem efficiently.

He quickly applied the same to books selection. Don Knuth
is an avid reader, and he was, like you or me, confronted with the
problem of evaluating in a book shop if he would or not purchase
a book. The only perfect way to know this is to actually read
the book. But after, it is too late... Knuth is a very rational
mind, and he came up with a solution to this problem. He
would choose a page, at random (we shall see what this means in
Knuth’s mind), read it entirely, and figure out from this sample
if he liked the book or not. Of course, the question is, what
random function would he choose? He chose to systematically
read page 316 (the joke is that 3.16 is square root of 10...). When
a book would be shorter than 316 pages, he would read the page
corresponding to the remainder of the division of 316 by the
number of pages in the book.

In Knuth’s life, computer science is certainly the dominant
activity, but he has two other ones, playing pipe organ and bible
study. Of course, the devouring passion for computer science
has deeply influenced him in other aspects of his life. The most
peculiar work he ever produced is ”3:16” [29]. ”3:16” is a cross
cut of the Bible, analyzing in depth, like with a magnifying glass,
each 16th verse of each 3rd chapter of each book of the Bible...

91

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Don Knuth made a series of 6 speeches on 3:16 at MIT. The
records of these speeches can be obtained from Doctor Dobb’s.

Now you understand what ”peculiarity” means. In the MIT
lectures, Don states he has a ”peculiar way of thinking”. I be-
lieve he means all the different ways to interprete ”peculiar”.
There is of course the usual interpretation, which is synonymous
to ”queer”, ”strange”, ”eccentric”, but also the more litterary
meaning, which can consistently be found in the Bible itself.
And Don Knuth knows the Bible well. Here is a first example
of the word ”peculiar” used in the Bible (Peter 2:9):

Ye are a chosen generation, a royal priesthood, and
holy nation, a peculiar people.

Or (Exodus 19:5):

If ye will obey my voice indeed and keep my covenant,
then ye shall be a peculiar treasure unto me above
all people.

Or also (Titus 2:14):

Who gave Himself for us that He might redeem us
from all iniquity and purify unto Himself a peculiar
people, zealous of good works.

In all these quotes, peculiar has a completely different mean-
ing, obviously. It is both associated to a ”privilege” (being
owned by God) and a ”responsibility” (being on Earth to do
something about it). Knuth explains extensively in the 3:16 lec-
tures that the incredible amount of efforts he spent during the
last decades on TAOCP were felt as a responsibility to use his
peculiar talent. So, when he talks about his ”peculiarity” he
means it from all the possible standpoints.

By the way, Don offers a check of $3.16 for any typo or
mistake found in 3:16...

92

2.2. RICHARD STALLMAN

2.2 Richard Stallman

A chapter dedicated to exploring the peculiarity of excellent soft-
ware developers would not be complete without a few words
on Richard Stallman (also known as rms, for Richard Matthew
Stallman). Richard is arguably one of the very best developers
of all times. Here is a small list of the awards he received:

• 1990: MacArthur Foundation fellowship.

• 1991: The prestigious Grace Hopper Award from the As-
sociation for Computing Machinery (ACM), for his work
on the Emacs editor.

• 1996: Honorary doctorate from the Royal Institute of Tech-
nology in Sweden.

• 1998: He shared with Linus Torvalds, the inventor of Linux,
the Pioneer award of the Electronic Frontier Foundation
for GNU/Linux.

• 1999: Yuri Rubinski Memorial Award.

• 2001: Second honorary doctorate, from the University of
Glasgow.

• 2001: The Takeda Techno-Entrepreneurship Award.

• 2002: National Academy of Engineering membership.

• 2003: Honorary doctorate, from the Vrije Universiteit Brus-
sel.

• 2004: Honorary doctorate, from the Universidad Nacional
de Salta.

• 2004: Honorary professorship, from the Universidad Na-
cional de Ingeniera del Perú.

• 2007: Honorary professorship, from the Universidad Inca
Garcilaso de la Vega.

93

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

• 2007: Honorary doctorate, from the Universidad de Los
Angeles de Chimbote.

• 2007: Honorary doctorate, from the University of Pavia.

• 2009: Honorary doctorate, from Lakehead University.

His two main software ”masterpieces” are gcc, one of the
most popular compilers on the planet, gdb, its debugger, and
emacs, a very famous text editor (and much more). He is bet-
ter known now as the founder, in 1984, of both GNU and the
free software movement4 for which he is now one of the active
evangelists. Richard practices self-derision about that and refers
sometimes to himself as Saint IGNUcius, and likes to dress with
a chasuble, while wearing a halo made of a hard disk platter.
Here is a quote from Richard:

People sometimes ask if St IGNUcius is wearing an
old computer disk platter. That is no computer disk,
that is my halo. But it was a disk platter in a former
life. Unfortunately, no information is available about
what kind of computer it came from or what data
was stored on it. However, you can rest assured that
no non-free software is accessible on it today.

You have to compare the self-derision Stallman demonstrates
with the famous picture of Einstein, showing his tongue.

You may think that Richard is simply an easy going person,
always ready to have fun. Richard is also a very active speaker,
with a very tight schedule, and without any holidays ever. He
is a missionary who travels extensively throughout the entire
world to propagate the word of free software. He could certainly
write a book with all the funny experiences he has had during
his travels. Like most of the very successful software developers,
he is very detail oriented, up to a point which may even worry
you, or give you nausea, like in the previous section, if you are
not a software developer.

4Free in the sense of freedom.

94

2.2. RICHARD STALLMAN

Here is an excerpt of a typical text (spanning many many
pages) sent to his hosts when he comes to give a speech:

A microphone is desirable if the room is large, but
I have a very loud voice, so I don’t need one for a
small or medium room. A supply of tea with milk
and sugar would be nice; otherwise, non-diet pepsi
will do. (I dislike the taste of coke, and of all diet
soda; also, there is an international boycott of the
Coca Cola company for killing union organizers in
Colombia). If it is good tea, I like it without milk
and sugar. No other facilities are required.

Another one, showing his inclination for political matters:

If you plan to restrict admission to my speech, or
charge a fee for admission, please discuss this with
me in advance and get my appoval for the plan.
I’m not categorically against limiting admission or
fees, but excluding people means the speech does
less good, so I want to make sure that the limita-
tions are as small as necessary. For instance, you
can allow students and low-paid people and political
activists to get in free, even if professionals have to
pay. We will discuss what to do.

Richard is known to do his best to answer each and every
mail he receives. Given his exposure, you guess that it means
plenty of mail. Many years ago, I have personally experienced
an extremely long exchange with him, and his availability and
inclination for exchange of ideas is simply stunning. I was just
an anonymous person emailing to him, and he took as much
time as he could to discuss with me.

His inclination again for dealing with the tiniest details:

If you are making a recording, please *make sure* to
tell me when the tape needs to be changed. I will
pause. Please help me help you make the recording
complete.

95

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Richard lives with a very little amount of money, far less
than the minimum you would think of. Do not forget he is an
evangelist, in the same spirit as the ones of the old times. Here
is a little quote on plane tickets:

Some organizations feel that hospitality calls for pro-
viding me with a business class ticket. That is indeed
more comfortable, but an economy class seat is good
enough even on an overnight flight if it is a window
seat. Meanwhile, speaking is my main source of in-
come, and the extra price of a business class ticket
would be a lot more useful for me if I can spend it on
something else. So if you were thinking of spending
extra for business class, how about you pay the extra
to me as a speaker’s fee instead?

His obsession for accuracy can be testified by the following
rules he sends to his hosts:

• He is okay with staying at a hotel, but he prefers a spare
couch or just the floor. The floor is okay because he’s
always bringing an air mattress with him. But he needs a
door for privacy.

• If the place is hot or humid, he needs air conditioning. At
72 fahrenheit and above he can’t sleep. There is an excep-
tion to this, air conditioning is optional if temperature is
above 72 and the air is dry.

• No cats, because he is allergic. Dogs that jump on him
frighten him. The first exception to this is that it is okay
if they are small. The second exception is if the dog is a
“jumping kind” but does that only at first encounter.

And it continues on the specific and utterly serious problem
of beds.

Unlike most, he doesn’t like hard beds. But he is conscious
of the fact that hardness assessment is a very subjective matter.
So his host is encouraged to compare with the softness of futons.

96

2.2. RICHARD STALLMAN

Futons are too hard for him, so if your bed is significantly softer
than a futon, it will be okay, otherwise it won’t. Smart, when
an absolute parameter cannot be assessed, there might still be
a total order. . . And in the case of beds hardness, there is.

In case the first point fails to be properly assessed (if you
have never heard of what a futon is, for instance. . .), you have
to get a hair dryer ready for him to inflate his mattress. Oh,
but there is another significant point to add, the dryer needs to
have a “cool” setting, so that it doesn’t damage the mattress.
The instructions do not say what happens if beds are too hard
and dryer does not have a “cool” setting. Shame.

Be reassured, Richard has a “loopback” mechanism, and he
knows that all this might cause some laughter, and he is capable
of self-derision. He finishes saying:

In case you are wondering, I cannot feel a pea under
a mattress, but I might feel a peanut under a thin
mattress.

Now, what about food? First he explains he doesn’t like
anything spicy. But he becomes quickly very specific:

Some foods I dislike include:

• avocado

• dessert that contains fruit or liqueur

• fruits that are sour (grapefruit, most oranges)

• hot pepper

• liver (even in trace quantities)

• stomach and intestine; other organ meats

I often dislike foods that taste strongly of egg yolk,
and some strong cheeses.

And on sightseeing:

97

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

I enjoy natural beauty such as mountains and rocky
coasts, ancient buildings, impressive and unusual mod-
ern buildings, and trains. I like caves, and if there is
a chance to go caving I would enjoy that. (I am just a
novice as a caver.) I often find museums interesting.

If there is a chance to watch folk dancing, I would
probably enjoy that. I tend to like music that has a
feeling of dance in it, but I sometimes like other kinds
too. However, I generally dislike the various genres
that are popular in the US, such as rock, country,
rap, reggae, techno, and composed American ”folk”.
Please tell me what unusual music and dance forms
are present; I can tell you if I am interested.

If Richard Stallman did not exist, we would have to invent
him.

Now, as a child, what was Richard like? You guess he was a
child prodigy. Richard was eight years old, when, as his mother
reports, he solved a tricky problem published in Scientific Amer-
ican, to tease the readers. He would have to be called 9 or 10
times for dinner before he would actually come, because he was
so absorbed by what he was doing. After a while, as Richard
says himself: ”After a certain age, the only friends I had were
teachers”. Dan Chess, now professor of mathematics at Hunter
College, used to be one of Richard’s fellow classmates. He says
about him: ”He was also smart as shit. I’ve known a lot of
smart people, but I think he was the smartest person I’ve ever
known”. His ”intensity” was remarkable, and he was very hard-
headed too.

Sam Williams, the author of ”Free as in Freedom”5 [59],
compares some of Richard’s psychological traits to the Asperger
Syndrome, also known as high-functioning autism. Stallman
himself admitted, during an interview that he was ”borderline
autistic”. This may explain his obsessive affinity for software
development and computers.

5http://www.faifzilla.org

98

2.3. PECULIAR JOKES

Being borderline, and staying always on the safe side while
dangerously playing with coming closer to the pathological side,
is certainly a feeling that most software developers have expe-
rienced to some extent. Self-derision, of the kind practiced by
Knuth or Stallman helps keeping a link with reality.

2.3 Peculiar Jokes

We just saw that peculiar people need to keep a good sense of
humor in order to remain on the safe side. It sounds natural
that peculiar people make peculiar jokes... Let us have a look
at two typical jokes which are particularly funny for developers,
and only raises the eyebrows of regular mortals.

The first one is from Knuth. It is a joke he made during
his 3:16 speeches at MIT. 3:16 is the weirdest topic you may
ever think of. And it is a vast one. Don cut his speech in
six chapters, and distilled it by fractions to the audience. In
his introductory speech, he tried to explain why he cut it in
6. His answer is that he could only think of 6 jokes. Pretty
dumb explanation, and lousy joke. But we are still on ground,
the next part of the joke is stratospheric, as he adds: ”and this
was the first one...”. Huh? Yes, follow him: he only thought
of six jokes, therefore he wanted to split his speech in six, so
that each of the parts had at least one joke. But saying it, is a
joke in itself! So it would make seven... No, because it is the
first one, the one he meant for the first speech. This is hilarious
for a developer, and completely lousy for a mere mortal. Why
so? Simply because it is a looping reference, one sentence in
the set of jokes refers to the set it belongs to, and therefore
becomes a joke itself. In other words, if you have n-1 jokes,
you can have an extra one, to reach n jokes by simply stating
that you devised n-1 jokes, and this, in itself, is an additional
joke. Well... It turns out all this holds some similarity with
the original works of the mathematician Georg Cantor, which
later inspired Bertrand Russell, Kurt Gödel and. . . Alan Turing.
In the same spirit, in a lecture given by Gérard Berry at the
Collège de France, Gérard jokingly (is it really so?) proposed to

99

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

support Alan Turing as a recipient of the... Turing Award, the
“Nobel” in Computer Science, as a homage to Turing’s affinity
with diagonal arguments. All these jokes, intertwined with hard
science, say a lot about the ones who tell them or on the ones
who laugh at them.

The other one, which is even more typical of a developer’s
peculiar sense of humor is the name Richard Stallman gave to
his movement. Richard Stallman wanted, through his free soft-
ware movement GNU, to fight against commercial brands, and
to produce an operating system which would not be proprietary.
His enemy was Unix, which was a trade mark of AT&T. What
is the meaning of GNU? It is an acronym, which means ”Gnu is
Not Unix”. Aha, but this is a recursive acronym! Recursivity is
a very hilarious concept for developers... It has been reused to
give a name to PHP which means ”PHP: Hypertext Preproces-
sor”. At some point in time, more hilarious names were given, in
relationship with emacs, one of Stallman’s babies: EINE meant
EINE Is Not Emacs, and ZWEI: ZWEI Was EINE Initially —
even better. In popular culture, the closest joke we can find is
“there are two kinds of people, the ones who say that there are
two kinds of people, and the others”. Not everybody finds it
funny...

We were talking about the Asperger Syndrome in the for-
mer section. Without assimilating developers to autistic people,
there is a similarity with the perception of what is a joke. An
anecdote is reported by Oliver Sacks in ”The man who mistook
his wife for a hat” [46]. He was studying two autistic twins who
had fun together, saying something briefly to each other trigger-
ing an explosion of laughter right after. He discovered they were
throwing prime numbers at each other. This was sheer joy for
both of them.

100

2.4. INTELLECTUAL, BUT SCIENTIFICALLY MINDED
AS WELL?

2.4 Intellectual, but scientifically minded
as well?

We identified in the former part of this document that the most
productive people in software development were people capa-
ble of very high intellectual productivity. ”Intellectual” is very
vague, what does it mean in this case? Let us consider a few
examples to draw some conclusions.

We know that Donald Knuth received a Ph.D. in mathemat-
ics on the subject of ”Finite semifields and projective planes”,
from the California Institute of Technology. What about oth-
ers? Here is a list, sorted by family name, of a few successful
developers or IT specialists. Let us see if they have made bright
scientific studies:

• Brian Behlendorf, the creator of the famous web server
Apache, studied at the University of California-Berkeley.

• Sergey Brin, co-founder of Google, received a Master’s de-
gree from Stanford University, but did not complete his
Ph.D.

• Dan Bricklin, author of the first spreadsheet, Visicalc,
holds a B.S. in Electrical Engineering/Computer Science
from MIT and an MBA from Harvard University.

• David Filo, co-founder of Yahoo, received a Master’s de-
gree from Stanford University.

• Bill Gates, studied at Harvard between 1973 and 1975,
but never completed his studies because of the expansion
of Microsoft business.

• Adele Goldberg, who greatly contributed to the creation
of SmallTalk, received a Ph.D. in information science from
the University of Chicago.

• James Gosling, the inventor of Java, one of the two most
successful programming languages nowadays, holds a Ph.D.

101

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

in maths from Carnegie Mellon University for a work on
”The Algebraic Manipulation of Constraints”.

• Grace Murray Hopper, one of the very first programmers,
received a Ph.D. in mathematics from Yale.

• William N. Joy, co-founder of Sun Microsystems, and au-
thor of csh and vi, received a Master’s of Science in Elec-
trical Engineering and Computer Science from the Univer-
sity of California, Berkeley.

• Mitch Kapor, founder of Lotus Development and author
of Lotus 1-2-3, received a B.A. and studied Cybernetics at
Yale.

• Brian Kernighan, one of the inventors of AWK, received a
Ph.D. in electrical engineering from Princeton University.

• Leslie Lamport, author of LATEX, received a B.S from the
Massachusetts Institute of Technology in mathematics. He
also holds M.A and Ph.D. degrees from Brandeis Univer-
sity, also in mathematics.

• Larry Page, co-founder of Google, received a Masters from
Stanford University.

• Dennis Ritchie, inventor of the C programming language,
graduated from Harvard with degrees in physics and ap-
plied mathematics.

• Richard Stallman, the founder of GNU, got a magna cum
laude degree in physics from Harvard.

• Bjarne Stroustrup, the inventor of C++, one of the two
most successful programming languages nowadays, holds
a Ph.D. in Computer Science from Cambridge University.

• Ken Thompson, famous for his contribution to Unix, re-
ceived a Master’s degree in electrical engineering, from the
University of California, Berkeley.

102

2.4. INTELLECTUAL, BUT SCIENTIFICALLY MINDED
AS WELL?

• Linus Torvalds, the author of Linux, holds a Masters de-
gree in Computer Science from the University of Helsinki,
the best university in Finland.

• John Warnock, the creator of PostScript, a format widely
used for laser printing, holds a Ph.D. in Electrical Engi-
neering from the University of Utah.

• Steve Wozniak, co-founder of Apple, was bored at school
because he was too bright. In 1975, he studied at the
University of California, Berkeley and left to roll out the
famous Apple I.

• Jerry Yang, co-founder of Yahoo, holds a Master of Science
degree in electrical engineering from Stanford University.

The list could go on and on. It is interesting to note the
amount of math backgrounds among the people mentioned, in
comparison with other types of scientific backgrounds.

By the way, Edsger Dijkstra said:

Besides a mathematical inclination, an exceptionally
good mastery of one’s native tongue is the most vital
asset of a competent programmer.

Similarly, if we forget individuals and focus only on nations,
we may wonder if there is not a correlation between excellence
in software and excellence of the scientific education system. Let
us take the laureates for the Fields Medal, the most prestigious
reward for works in mathematics. If we look at all the laureates
since the creation of Fields Medal in 1936, and count only the
nations having had more than one laureate, and order them by
decreasing amount of laureates, we get:

103

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Country Amount of laureates

United States 12
France 7
United Kingdom 6
Russia 6
Japan 3
Germany 2

This list does not exactly correspond to the hall of fame of the
worldwide software industry, simply because maths and software
are not exactly the same thing. Also, the numbers above are not
that big, and statistics cannot be built on small numbers. But
the list is close enough to be striking. We do not find any country
without any meaningful software activity, when actually those
are very numerous. We do not miss either meaningful countries
building software products (considering that India and China
are today essentially producing custom software).

Does the evidence above imply that all people performing
superbly in IT have made brilliant scientific studies?

Does this imply that all people who made brilliant scientific
studies will perform superbly in IT?

The answer is clearly no to both questions. The first one
is contradicted by the vast number of people who have done
reasonably good studies, and who succeeded in software. After
all, the simple fact that the education system makes a selection
based on the performance of a given person at a given time of
his/her life, shows that it is not a perfect ”filter”, even if success
in the studies was the only criterion. During life, people have
different maturity levels, or can face various material or affective
problems. This may handicap making excellent studies, but does
not affect their potential.

Now, among the ones who made top scientific studies, as ex-
plained earlier in the document, a meaningful amount do not fit
well the concrete requirements of software production. Software
projects require a steady constant concrete production, not the
invention of a very innovative solution to a punctual very difficult
problem. This is the difference between a theoretical approach

104

2.5. THE ELLIPSE AND THE CIRCLE

and a concrete one.

2.5 The ellipse and the circle

Here is a little anecdote explaining the difference between a the-
oretical approach and a practical one. This anecdote revolves
around Philippe Kahn, the founder of Borland. Philippe Kahn
used to be professor of mathematics in Grenoble, France. He
started becoming fascinated by software development, and de-
cided to move away from teaching to start a development career.
The story says that he applied for a one year course on compila-
tion techniques that was organized by the University of Nice, on
the French Riviera. His application was apparently rejected by
the professor responsible for the cursus, and he was firmly en-
couraged to return to teaching mathematics, as his potential in
IT was considered very weak. At the light of the enormous suc-
cess of Borland and its reputation for producing lightning fast,
superior quality compilers, this story is one of the funniest in
the software history. It also highlights the difficulty to evaluate
somebody through a mere interview or motivation letter.

When Borland released its first C++ development environ-
ment, Philippe Kahn was extremely proud to have been faster
than Microsoft. As a — most likely intentional — ironic ges-
ture, he decided to pick the French Riviera as one of the very
first spots where he would give a presentation of his new baby.
I was lucky enough to be part of the crowd who listened to
Philippe Kahn, and witnessed the demonstration of the long
awaited Turbo C++. The crowd was made up of a variety of
people, from the industry, education and research.

Philippe made a very enthusiastic presentation, and did more
than a bit of programming on the spot to show Turbo C++ ca-
pabilities. He developed a few pieces of code, compiled then, ran
them. At the end of the session, the people sitting in the am-
phitheater were allowed to ask questions. One of them triggered
one of the most interesting exchanges I have had the opportu-
nity to witness. To me, it is part of computing history, in spite
of the brevity of the exchange.

105

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

One of the people in the audience was a researcher. During
the programming part of Philippe Kahn’s ”show”, this person
was utterly shocked by what Philippe had done, and the way he
had programmed his small application. In order to understand
what is behind the last part of the anecdote, it is necessary to
explain the context. Turbo C++ is the implementation of a
development environment for C++. C++ is an object-oriented
programming language, invented by Bjarne Stroustrup during
the eighties. Object-oriented languages have started to become
very popular, something like ten years ago, because they consti-
tute a meaningful progress, in many respects, to produce soft-
ware. One of their interesting features is the ability to facilitate
reuse of existing code. Through reuse, a software organization is
capable of drastically cutting down production costs. Instead of
reinventing the wheel, object-oriented programming languages
allow you to define what a wheel is, and facilitate the incor-
poration of a wheel in other people’s solutions. This capabil-
ity is of course not new, and did not wait until object-oriented
languages appeared to be exploited through classical languages.
But object-oriented programming languages, in a nutshell, make
it far simpler.

As the borderline between science and software is always
pretty fuzzy, there is always a temptation to see software under
the pure theoretical standpoint. Object-oriented programming,
including the one made possible by C++, is no exception. The
terminology used in object-oriented programming does not really
help in considering it as a mere software tool, meant to facili-
tate developers’ lives. Terms like ”inheritance”, and especially
”polymorphism”, contribute to the illusion that practitioners
are scientists. Philippe Kahn, during his presentation on Turbo
C++ made some fun out of this terminology, and ventured on
the anti-intellectualism terrain his audience ordinarily expects
from him. In this case, this was probably not well received.

At the end of his presentation, Philippe proposed the usual
questions and answers session. One of the people among the
assistance raised his hand. Instead of asking the question you
would expect during such a presentation by a CEO of a leading

106

2.5. THE ELLIPSE AND THE CIRCLE

software editor, he asked a very detailed oriented question on
the actual piece of code that Philippe had developed during the
demonstration. The question was the following: ”I have a hard
time understanding why you programmed the example the way
you did. I always do it exactly the other way round. If I face
the same problem, instead of having the ellipse deriving from the
circle, I have the circle deriving from the ellipse”.

This requires a decoder, a babel fish as Douglas Adams would
say, to understand object-oriented jargon. As a matter of fact,
Philippe Kahn understood the question very well, of course, and
answered straight away, without giving the answer more than
a few milliseconds of thought: ”That is exactly the difference
between research and industry”, and he proceeded abruptly with
other questions.

You could believe that he did that to avoid having to answer
a very difficult or tricky question. In fact, he could not give a
better answer to the question. Elaborating more requires far
bigger efforts, and Philippe’s answer is an utterly striking sum-
mary of the actual answer. The most surprising is that it did
not take him any measurable amount of time to figure it out. It
tells a lot about the amount of maturity, and deep understand-
ing of software development somebody like Philippe Kahn had
reached.

Now, some explanations are required to understand what
Philippe meant. Object-oriented development can either be seen
as proposing the ultimate data modelling technique, that is an
equivalent to a mathematics concept, or it can be seen as a mere,
although sophisticated, instrument, to bring more comfort to
developers. Philippe Kahn obviously belonged to the second
category. Philippe had used, in his code sample, a piece of code,
where the Ellipse class inherits from the Circle class. You
have to think about a class as a description of a common profile
that a number of objects (rather intellectual objects, actually)
share. For instance, the Circle class can be fully defined by a
point, being the center of the circle, and a radius. All circles
have all these characteristics. Similarly, an Ellipse, can be fully
defined for instance by a center, a major axis and a minor axis.

107

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

It is important to note that a circle is a particular case of ellipse,
where the major and minor axis are equal to the diameter of the
circle.

As a consequence, as a circle is an ellipse, it is fully satisfying,
from a mathematical standpoint, to have a circle deriving from
an ellipse in an object-oriented programming language. On the
other hand, the inheritance rules in C++ impose that, as the
circle is an ellipse, it has independent axis. As a consequence, the
circle is unnecessarily storing two pieces of information, when it
requires only one, the radius.

The confusion comes from the fact that inheritance, in C++,
is not allowing to describe mathematical concepts, but it allows
to program. Wanting absolutely to see classical mathematics or
ultimate modelling means, in C++ does not mean much. Being
fully satisfied from a mathematical or merely ”set logics” stand-
point does not mean that the programming language is used
correctly. There is a huge gap between a theoretical approach
and a practical software development approach, one that justi-
fied the disdain that Philippe Kahn exhibited when answering
the question. In the case above, having a theoretical approach
leads to producing unnecessary fat objects. The precious and
unfortunately now out of print ”Taligent Guide to Designing
Programs” [51] calls this ”anti-pattern” or ”pitfall”, overedu-
cated base classes, and rightfully warns developers against such
practices. Ironically, the overeducated base classes syndrom is
often a trap for overeducated people!

Everything would of course be too easy if software develop-
ment had nothing to do with science. Unfortunately it has...
Edsger Dijkstra, famous for his paper ”Goto Considered Harm-
ful”, and winner of the ACM Turing Award, wrote that ”Pro-
gramming is one of the most difficult branches of applied math-
ematics; the poorer mathematicians had better remain pure
mathematicians.” and ”The use of anthropomorphic terminol-
ogy when dealing with computing systems is a symptom of pro-
fessional immaturity”.

Now, was Philippe Kahn right? The real answer is that he
wasn’t. But he did not care. In C++, the ellipse should not

108

2.6. PECULIARITY, AESTHETICS AND CULTURE

derive from the circle, and the circle should not derive from the
ellipse (at least not naively). But we would enter too long a
debate to explain that. Also, while all this holds true for C++,
it may not hold true for all programming language. But one
conclusion remains: software tools are only tools, and pure the-
oretical standpoints are dangerous in software development. It
is a fact that there is some level of contradiction between making
bright scientific studies, and having the practical sense software
development requires. To some extent, the class of people who
have too theoretical an approach for software development fuel
the anti-intellectualism (cf. section 1.13.5) software development
suffers from.

2.6 Peculiarity, Aesthetics and Culture

It may seem that there is an incompatibility between being a
bright developer and having some interest in cultural matters.
A common feeling is that being bright in development involves
so much dedication that being open to the rest of the world is
reputedly impossible. This is not true for the very best develop-
ers, and strangely enough, many of them have a vivid interest
in music, litterature and art in general. This is something you
would not expect from a purely scientific mind. It seems to me
more intense in the software engineering field than in other engi-
neering activities. Anecdotes are numerous about links between
software development and culture. Let us take two of them.

One of the software pioneers, Peter Samson, had built at the
MIT a program on the TX-0 machine, that allowed the machine
to play music. Although this, in itself, shows some interest for
classical culture, the core of the anecdote lies further. Peter
Samson was famous for his unwillingness to insert comments
in his code. This is reminiscent of Evariste Gallois, the young
mathematics prodigy, who invented group theory, before dying
in a fatal duel. Evariste Gallois hated to elaborate on his work,
and frequently skipped parts of the demonstrations, because he
found them too obvious, rendering a few parts of his work still
somewhat obscure nowadays. In Samson code, one could find

109

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

long series of machine instructions without any comment, except
a mysterious one: RIPJSB, right beside the constant 1750. After
a lot of interrogations, one of the puzzled readers figured out
that 1750 was the year Bach died, and understood that RIPJSB
was an acronym meaning Rest In Peace Johann Sebastian Bach.
This is probably the most unexpected cultural reference in a
piece of software...

The second anecdote is buried even further in computers
architecture. In a computer, each piece of accessible memory is
given an address, which is a numeric value. These individual
pieces of memory are called bytes6 . This address is used to
retrieve the information stored in memory. The numeric value
constituting the address can be increased or decreased in order
to span the addressable memory space. When storing a number
in a computer’s memory, if the number is too large to fit on a
single byte, it needs to be stored on several ones. The ”most
significant” byte is the one storing the most significant value
constituting the number. For instance, in the decimal system,
the number 1234 has 1 as the most significant digit, and 4 as
the least significant digit. This is the same in the binary world
of computers. Two choices exist when designing a computer,
the most significant byte can be stored at the lowest address,
or the highest. In these cases, respectively, the big endian and
little endian approaches are used. Some computers support both
of these modes. Most developers are very familiar with those
terms. Few know their origin. These expressions actually come
from Jonathan Swift’s most famous opus, Gulliver’s Travels. In
that work, Swift describes the Lilliputian king, who asks his
subjects to break their eggs at the smallest end, and fights arise
between the ”Little Endians” and the ”Big Endians”.

As we already saw, Donald Knuth is Professor Emeritus of
the Art of Computer Programming at Stanford, and the word
Art has to be accepted with all its meanings. This is espe-

6The word byte is often mistaken with octet. A byte is an octet when
the individual addressable memory stores exactly 8 bits. This is not al-
ways the case, although it is frequently true, and depends on the computer
architecture.

110

2.7. INTELLECTUALS AND THEIR WEAKNESSES

cially obvious with his work on fonts and the use of Bézier
curves. These curves were originally invented by Citroën (Paul
de Casteljau) and Renault (by Pierre Etienne Bézier) to build
beautiful car shapes. These curves extended to many industrial
areas and are now synonymous with ”beauty”, like the legendary
”golden number”. Knuth’s interest in aesthetics is also obvious
when you consider his taste for ”manual” calligraphy, as testified
by Bible verses calligraphies in 3:16 [29].

Interestingly enough, Robert M. Pirsig, in ZAMM (”Zen and
the Art of Motorcycle Maintenance: An Inquiry into Values”)
[39], associates also the word ”Art” with an activity he describes
as very similar to scientific work — motorcycle maintenance.

Brian Kernighan, the inventor of awk, co-author with Dennis
Ritchie of the famous book on C programming language [26] is
known for teaching a very original subject at Princeton: pro-
gramming style. James Coplien, in ”Advanced C++ Program-
ming Styles and Idioms” [11] says that ”style distinguishes ex-
cellence from accomplishment”, and he applies it to software
development.

All this means that aesthetics and development are not only
compatible, but they are, to some extent, even difficult to disso-
ciate. Of course, the closer you get to programming, the more
different the aesthetics are from classical arts. But remains the
fact that a clear sense of aesthetics is required to become a very
bright developer. This is not new, and applies even to math-
ematics, and examples are numerous of arts ”missing links”,
which establish bridges between various aesthetics. Johann Se-
bastian Bach, Kurt Gödel and Maurits Cornelis Escher are a few
examples, all three strikingly compared by Douglas Hofstadter
in ”Gödel, Escher, Bach: An Eternal Golden Braid” [23]. Those
three clearly are peculiar in their own domain.

2.7 Intellectuals and their weaknesses

Being an intellectual does not provide an immune system against
all parasitic ideas which can pollute the rationality of our brain.
Some time ago, I visited a religious organization — I should

111

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

say a sect. The tour around the campus was made by a per-
son doing scientific research work in a major national research
institute. Truly a very respectable person. She explained that
their guru, the previous night, had killed during his sleep 10,000
lemurians who try every night in secret to conquer the earth.
10,000. Lemurians. The site was covered with giant statues,
some representing angels with machine guns...

Newton (1642-1726) himself was an alchemist — well, ev-
erybody was at that time, except just a few like Athanasius
Kircher (1601 or 1602-1680) and especially Werner Rolfinck (be-
came professor at the University of Jena in 1629).

The 13th of June, 1838, the great scientist François Arago
predicted that the most sweating people would catch pleuresy
when passing through a train a tunnel, because it would create
too quick temperature changes.

It is well known that even the most brilliant minds can easily
be influenced by the most silly ideas. All this is a matter of being
particularly vulnerable on one aspect of one’s personality, and
the brain fuses... This can be a collective phenomenon, and
to some extent, the fact that it is collective makes it suddenly
attractive to less vulnerable people, as a snowball effect.

Without any doubt, the same happens in the field of software
development. The following contains just a few anecdotes on the
subject.

2.7.1 Compiling FORTRAN is impossible

2.7.2 No computer can ever play chess

This anecdote is reported by Steven Levy in ”Hackers: Heroes
of the Computer Revolution” [32]. During the mid sixties, a
Rand Corporation memo entitled ”Alchemy and Artificial Intel-
ligence” circulated. It was written by an academic named Her-
bert Dreyfus. Dreyfus compared the complexity of the human
brain with a computer’s circuitry and concluded that a com-
puter would be incapable of matching the type of intelligence a
human brain is capable of. He concluded for instance that ”no
computer program would be able to play a good enough game

112

2.7. INTELLECTUALS AND THEIR WEAKNESSES

of chess to beat a ten-year old” (from Levy).
Obviously, the MIT hackers were deeply offended by Drey-

fus’ paper. One of them, Richard Greenblatt, designed a chess
program, MacHack, and invited Dreyfus at the MIT to play it.
Herbert Simon, one of the artificial intelligence pioneers, reports:

[. . .] a real cliffhanger. It’s two woodpushers [. . .]
fighting each other [. . .] Dreyfus was being beaten
fairly badly and then he found a move which could’ve
captured the opponent’s queen. And the only way
the opponent could get out of this was to keep Drey-
fus in check with his own queen until he could fork
the queen and king and exchange them. And the
program proceeded to do exactly that. As soon as it
had done that, Dreyfus’ game fell to pieces, and then
it checkmated him right in the middle of the board.

2.7.3 We can do anything with COBOL

When I started contemplating having a ”real” permanent job in
the ’80s, there used to be a clear distinction between business
processing and scientific software development. I was very curi-
ous about this distinction, and had the very intense feeling that
all this would fall within the general ”IT” basket, with technolo-
gies converging to a similar point. If my analysis was wrong, my
personal inclination, which was to develop scientific software,
would keep me out of business processing software, and I would
be forever full of questions on that field. Being young pushes
you to adventure, and I decided to enter business processing
software development at the beginning, in order to explore this
world. The company I was working for was the major French
software editor, one of the largest in Europe, and started to
enter the American market, with solutions which ranged from
pure 4GL development, to a complete range of full fledge Enter-
prise Resource Planning solutions. From classical programming
(C, ADA, LISP, Prolog, etc.) on open systems, I switched to
COBOL development on a variety of mainframes. I have always

113

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

had a very vivid curiosity for everything which deals with pro-
gramming, and I learnt this language quickly, with a reasonable
amount of pleasure. The company I worked for was extremely
successful, and it was later acquired by IBM, as part of IBM
Global Services.

I saw no sign of the convergence I was expecting, until a
German company started communicating around ERP solutions
which were available on open systems (Unixes). At last, this was
the sign I was waiting for. I rushed into the office of the chief
technology officer of the strategic branch I was working for. I will
remember all my life the chat I had with him. I started talking
about Unix very excitedly (remember, I was young), and about
other programming languages. To my surprise, my interlocu-
tor was completely closed to any move. He felt that the German
competitor company was a dwarf, that it would collapse quickly,
and that COBOL was a universal programming language, capa-
ble of producing everything, including what we would call now a
”Computer Aided Software Engineering” tool, or an ”Integrated
Development Environment”. I realized that the entire company
was fanatized by COBOL, and that any move was considered
the most silly thing to do. Of course, nowadays, this position
sounds utterly outdated, but at that time, for many people, it
made a lot of sense. It was a time when chief information offi-
cers working for banks or insurance companies were reporting on
front page magazines that they had engineered their own devel-
opment environment. Crazy times. The company I was working
for was no exception and was convinced that anything could be
done with COBOL. This faith in COBOL went up to the point
where it turned them completely blind. I resigned immediately
after. If anything could be done using COBOL, it would be
without me.

The German company was SAP, and the company I was
working for saw its software customer base disappear completely
throughout the years, without any reaction. The company wit-
nessed its software editor arm, half of the activity, shrinking into
oblivion. The most brilliant engineers were working for them,
and unfortunately, they had become completely insensitive to

114

2.7. INTELLECTUALS AND THEIR WEAKNESSES

the outer world, as they were so obsessed by COBOL.

SAP is now the most successful ERP software company, by
very far. Nobody is capable of matching them.

2.7.4 We squeeze everything out of X-Window

One of the companies I worked for, later on, was the leading
supplier of object-oriented components in the world. This com-
pany was a spin-off of the largest research institute in IT and
automatics. Their core technology was LISP-based. LISP is one
of the very early programming languages, designed at MIT, at
the times of the pioneers. Its users community is very closed
on itself, and has some of the traits of an ideology, to a much
greater extent than the COBOL community I was referring to
above. LISP is reputedly very slow, and thus, sometimes peo-
ple refer to it jokingly as “the most intelligent way to misuse a
computer” (I endanger my life by reporting this...), and when I
considered working for this company, I had a few worries on the
fact that I would have to use LISP all day long.

When I met the CEO, an extremely bright person, with a
stunning vital energy, I asked him his opinion on LISP perfor-
mance, and in particular on the capabilities offered by the graph-
ical toolkit they were selling at that time, and which drove most
of the company’s sales. The CEO explained to me that their
tool was squeezing all the power out of the graphical system it
ran on. This system was X-Window, a popular graphical sys-
tem on Unix/Linux and modern Mac OS. The CEO told me
that they were capable of refreshing 360 objects per second. I
was not a specialist of X-Window, and that sounded okay to me.
That company had convinced all its customer base (in addition
to itself), that their LISP toolkit was the best on the market,
and that it could not be beaten. Similar stories were circulating
on the relative performance of LISP versus other programming
languages, by the way.

I joined this company, and a few months later, I heard the
most astounding story (see page 33). A — very — bright devel-
oper had isolated himself during three months (one of the key

115

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

assets of the company was to allow any senior developer to do
that, without any reporting), to develop a personal project. Af-
ter three months, this developer had asked the CEO to come
and see him. Very curious, the CEO came and the following
happened: the developer said ”do you see these small patterns
on the screen? Look, I select them, and I move my mouse. Look,
they follow the mouse in real time.”. Each of these small pat-
terns was actually an independent object on screen. There were
hundreds of thousands of them. And they could move in real
time, following the movements of the mouse. We were not talk-
ing about 360 objects refreshed per second, those were hundreds
of thousands of objects moved in real time, without sign of any
problem on the X-Window side. Within a second, the CEO (he
was extremely bright, again) realized the fanatism he had been
living in, and on top, the fanatism which had been communi-
cated to the staff, and to the customers. He asked immediately:
”but what technology are you using?”. The developer answered
”this is C++ code, no LISP”. This was such an earthquake for
the company, that the developer was prohibited from communi-
cating on his work within the company. The CEO was scared
that the employees would all leave the company at once. This
was evidence. From 360 to maybe 4-500,000 objects refreshed
per second, only a 1,000 or 1,500 ratio...

The company decided ultimately to stop developing LISP
software, stopped its LISP compiler project, switched to other
technologies, grew comfortably, and is in quite a healthy situa-
tion, more than a decade after these events. Just a few people
left the company when LISP was abandoned.

It is funny to note that the debate on LISP and on its addic-
tive properties already existed since the very beginning, within
the MIT premises. Levy [32] recalls very strong words:

One of the tasks Gosper considered impossible was
a useful LISP on a PDP-6 — it might be nice as a
symbol evaluator, but not to do anything. He con-
sidered it one of Minsky’s follies that Greenblatt and
the others had been tricked into implementing.

116

2.7. INTELLECTUALS AND THEIR WEAKNESSES

Note the world ”follies”...
Lutz Prechelt [42] demonstrated very brilliantly that inter-

personal variations have a far greater impact on productivity
and solutions efficiency than technology itself. This explains
the inability of many software companies to evaluate technology
correctly. After all, when they attempt to evaluate another tech-
nology, they only evaluate the skills or the technological affinity
(sometimes fanatism) of their staff.

The most sensible explanation I find to the unavoidable ad-
diction to some specific technologies is due to their intrinsic com-
plexity. When you master, after a great deal of efforts, a given
technology, you are naturally not inclined to change, and you
stick to it with all your energy. Additionally, the tools them-
selves shape and affect the mind, as explained by Edsger E.
Dijkstra:

The tools we use have a profound (and devious!) in-
fluence on our thinking habits, and, therefore, on our
thinking abilities.

Also, remember that a computer is a universal machine (fol-
lowing the exact terms coined in by Alan Turing, one of the
fathers of computing), and the temptation is strong to consider
a specific technology as the universal silver bullet for all prob-
lems (see section 2.7.3 on this subject).

This addiction can be compensated by Functional Division
of projects, as explained on page 63.

2.7.5 Time will come when computers will be fast
enough

This section recounts an anecdote I have seen repeating itself
so many times, under a variety of forms. This one is the most
typical. Technological fanatism, and fanatism in general can be
testified by the sudden absence of logic, or the sudden blindness
on an obvious side of a problem. The story which follows relates
to LISP. It is just accidental that the former paragraph is also
about LISP. I do not have any specific strong feelings against

117

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

LISP, but it is simply obvious to most of the software developers
that this technology has not spread to the extent its community
expected it to reach. It remains on a niche market, which will
certainly survive a few decades. After all, as my friend Jean-Paul
Rigault says, ”programming languages never die”.

When I was doing my PhD thesis, using the very minimal,
but however efficient, C language, I got a visit from a promi-
nent figure of the leading research institute in IT and automat-
ics. He paid a visit to do some evangelism on LISP, and push
me to abandon C. What was his argument? He said that, yes,
LISP was slow, but it was simply a matter of computing power.
One needed only to wait a bit, and thanks to Moore’s law7 , the
time would come when LISP would be efficient enough to be
widespread. Therefore, it was a big mistake to continue invest-
ing on C, and it was high time to switch to a more elaborate
programming language.

I have heard this reasoning so many times that I do not even
remember how many. I still hear it at the same frequency, as
if the frequency was universal like Planck’s constant. There is
an obvious swindle in the idea itself, a swindle so obvious that
respectable people should not propagate it. Of course, it is now
even more obvious as LISP did not invade our familiar environ-
ment. It is not related to the nature of LISP, for instance. The
question is not whether LISP is actually superior to C or not, if
it allows to produce software at a sustainably cheaper price, or
with a higher quality. The question is: what do we do with the
extra power allowed by Moore’s law? The answer is very simple.
The power offered by Moore’s law is feeding an inextinguishable
monster. A monster which is never satisfied, which is always so
hungry that nothing could feed it. This monster is what you
expect from your computer. The hunger for functionalities is so

7Gordon E. Moore, one of the founders of Intel, made a prediction in
1965. This prediction is now universally known as ”Moore’s law”. It states
that computing power doubles, for the same price, every eighteen months.
Since it was stated, it has been remarkably verified, in spite of its exponential
nature. It was actually initially stated for 12 months, and Moore revised it
at the end of the ’70s and replaced the 12 months parameter by two years.
It is usually taken now as 18 months.

118

2.7. INTELLECTUALS AND THEIR WEAKNESSES

huge, that whenever a more powerful processor is released, the
entirety of this power is eaten up by additional software features.

So, as Edsger Dijkstra explained it in an ACM Turing Lec-
ture in 1972 [15], we are not in a situation where the equipment
is a “painfully pinching shoe” to be relaxed when more powerful
machines would be available. And Dijkstra was right when he
said:

[...] in those days one often encountered the naive
expectation that, once more powerful machines were
available, programming would no longer by a prob-
lem, for then the struggle to push the machine to
its limits would no longer be necessary and that was
all what programming was about, wasn’t it? But in
the next decades something completely different hap-
pened: more powerful machines became available,
not just an order of magnitude more powerful, even
several orders of magnitude more powerful. But in-
stead of finding ourselves in the state of eternal bliss
of all programming problems solved, we found our-
selves up to our necks in the software crisis! How
come?

Take the LISP example. At the time of the anecdote, no
widespread office product (text processor, spreadsheet) was coded
in LISP. No widespread operating system, no widespread database
system was coded in LISP. Had they been coded in LISP, they
would have been extremely slow, and so resource hungry that
working with them would have been barely acceptable. Only
the very powerful emacs text editor, programmed in C, uses
extensively a LISP dialect for its extensions. But it cannot
match popular office text processors when it comes to editing
sophisticated documents. Of course, the functionalities offered
15 years ago by text processors, spreadsheets, operating systems
and databases, were inferior by far to the ones we are enjoying
today. Today, maybe, on modern computers, the user experi-
ence we could have on solutions coded in LISP might compare
to what people were experiencing with non LISP technologies in

119

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

the past. But who would care about that? For instance would
you like to revert to windows, which draw only their outline
when you move them on your screen? No, today you want to
see the window moving in real time. You want to see the con-
tent moving. And you want them to be semi transparent too.
You do not want to switch back to early versions of Windows or
Macintosh OS. Seriously, there were hoards of people investing
and working on LISP-based operating systems, to have ”pure”
LISP machines...

The pressure of the hunger for functionalities is of course
not the only driver. Marginally, it is true that a little bit of the
power is used to allow for a slightly better productivity for the
developers who produced the solution. But when you are in a
competitive situation, every possibility to offer more function-
alities for the same price prevails. Otherwise, you are quickly
out of business, and a competitor will propose more to your
customers.

My interlocutor had simply overlooked the main parameter
driving the ever growing power of processors. He overlooked
it, because he was so addicted, so obsessed by his addiction,
that he became completely blind. This mistake is very frequent,
because if one striking major law of computing is to be quoted,
most people mention Moore’s Law. This exponential law is so
exceptional, that few can imagine that there is an even stronger
one: the inextinguishable hunger for functionalities. This law is
stronger by far, as a matter of fact, it is computing’s equivalent
of the general gas law from physics. Even if the container grows
exponentially, gases will occupy all the space. Its computing
counterpart could be called the general functionalities law...

As a summary, the software industry obeys the following law:

CT = nF

Where C is the competitive pressure, T is the acceptable re-
sponse time (a relatively stable parameter), and F is the amount
of functionalities.

Software professionals who ignore this ”functionality law”,
and select technologies not capable of delivering the proper amount

120

2.7. INTELLECTUALS AND THEIR WEAKNESSES

of functionalities as driven by this law will become preys for
newcomers. Of course, response time for a given technology
evolves with time, thanks to Moore’s law, but competitive pres-
sure evolves too, often exactly at the same speed.

So now, if you hear: use this, it is slow now, but one day,
computers will be fast enough to... be very careful.

2.7.6 When one has a hammer, everything looks
like a nail

While it makes sense from a scientific standpoint to push all
theoretical frameworks to their limits, the gap with reality and
concrete matters is very wide. Between computing envisioned by
Alan Turing and the application of programming languages for
running banks, insurances or even embedded systems which go
to Mars, there is some difference of approach. Indeed, delivering
solutions based on computing requires overcoming difficulties
with the best possible means, while, for instance exploring the
potential of an algorithm, or a programming language is already
part of science. This is precisely what Philippe Kahn meant
about the difference between research and industry (see section
2.5).

But it is easy to be trapped and mix the two. This holds
especially for programming languages. Programming languages
are supposed to be universal (remember about Turing’s universal
machine), and it is therefore very easy to fall into some level
of fascination about their abilities, especially if you mastered
them after some pain, and are willing to rest on your recent leap
forward. Most of the programming languages invented since the
fifties are able to describe the processes running in a bank, an
insurance or an embedded system going to Mars. This is both a
wonderful — and again fascinating —, property of computing,
and a handicap to make proper choices, as being able to do
something, and doing it well — with all the different meanings
it can have — are two different things. A great deal of irony
comes from the fact that the fascination is all the more potent,
that the language theoretical framework is simple.

121

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

Fascination, combined to the joy of mastering a set of com-
plex concepts leads very easily to fanatism. Fights about lan-
guages have been very frequent since the fifties, they have even
been called “language wars”, where camps fight to defend a vi-
sion of the world which fits their standpoint.

There are striking and funny historical examples. It has
been perfectly possible to build (supposedly) general purpose
programming languages proposing a vision of the world where
everything is a list (LISP), everything is a string (SNOBOL),
everything is a stack (Forth), everything is a pattern (Prolog),
everything is an object (Smalltalk, or Eiffel), to speak of the
most famous ones. When object-oriented programming started
its propagation beyond the limited circles where it was known, to
become a popular technology, a similar phenomenon happened,
and the public saw objects as the last marvel of the world, re-
solving magically all the problems we had faced since paleolithic.
At that time, I remember people answering to each technical is-
sue raised in project workshops “it’s an object!” as if it was the
ultimate solution to everything.

Bjarne Stroustrup has created with C++ an entire differ-
ent animal, which inherits from structured programming, while
mixing it with object-oriented and then generic programming
models. The very practical, however impure result, has been
criticized by purists (see section 2.8.1 dealing with purity) for
accumulating different models rather than drawing a single one
unifying them. Java, later, has attempted to do the same while
offering simpler constructs. Bjarne’s approach, which is driven
by practical considerations, aims at providing different solutions
for different classes of problems, and, specifically for a design
ensuring that you do not have to pay for what you do not use.

Blindness and fascination for a programming languages has
caused a litany of failures. We have already talked about the
insistence on COBOL, triggering the demise of a very large Eu-
ropean product company (section 2.7.3), but other examples are
numerous. Similarly, Smalltalk has kept Xerox PARC8 unable

8Palo Alto Research Centre

122

2.8. TECHNOLOGY AND SOCIETY

to create Apple, while Steve Jobs, after a visit to the PARC
realized immediately that all user interfaces would eventually
behave like the one invented by Xerox for the Alto, and created
the Macintosh, selecting the then more adequate assembler to
develop it. Himself, after leaving Apple, created NeXT Com-
puter, and his staff insisted on basing the system entirely on
Objective-C, a decision which turned out to reproduce the same
mistake as the one they fixed by eliminating Smalltalk from the
Xerox system they had used as an inspiration. Not everything
is a nail...

2.8 Technology and Society

Fashion, politics, philosophy, art, are obviously influenced by the
directions taken by our society, and by the evolution of thought.
Software is apparently the most improbable area that could be
influenced by external factors. It seems to be an isolated activ-
ity, to some extent, attracting people who hate socializing and
remain on the margin of the rest of the world. This is not —
completely — true.

We have already pointed out in section 1.3 the relationship
between the counterculture of the sixties, the hippies movement
and the revolutionary nature of software. It is a fact that the
hippy community, of which Jack Kérouac [27] was the pope, used
to consider technology as foul. This is a theme highlighted as
well in Pirsig’s ZAMM [39]. Pirsig published his book during
the post hippy period (1974 exactly), but the action takes place
in 1968. Pirsig explains his relationship with a couple of friends
who have a very strong aversion to technical matters, an aver-
sion he discovers, as an enlightment, by analyzing their weird
reactions. The book is about the motorcycle rides he makes
with them, and the constant surprise he has about their lack of
interest in understanding how their motorcycle works and can
be properly maintained:

It occurred to me that maybe I was the odd one on
the subject, but that was disposed of too. Most tour-

123

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

ing cyclists know how to keep their machines tuned.
Car owners usually won’t touch the engine, but every
town of any size at all has a garage with expensive
lifts, special tools and diagnostic equipment that the
average owner can’t afford.

and:

I might have thought this was just a peculiar atti-
tude of theirs about motorcycles but discovered later
that it extended to other things.... Waiting for them
to get going one morning in their kitchen I noticed
the sink faucet was dripping and remembered that
it was dripping the last time I was there before and
that in fact it had been dripping as long as I could
remember. I commented on it and John said he had
tried to fix it with a new faucet washer but it hadn’t
worked. That was all he said. The presumption left
was that that was the end of the matter. If you try
to fix a faucet and your fixing doesn’t work then it’s
just your lot to live with a dripping faucet.

Note the ”odd” and the ”peculiar” in the two former quotes.
Actually, it turns out that Pirsig realizes that the peculiar one
is himself. Most people hate technical matters, and have grown
a defiance with respect to technology. The ones having no fear
belong to a scarce breed.

Another quote, with a direct reference to programming:

It’s not the motorcycle maintenance, not the faucet.
It’s all of technology they can’t take. And then
all sorts of things started tumbling into place and I
knew that was it. Sylvia’s irritation at a friend who
thought computer programming was ”creative”. All
their drawings and paintings and photographs with-
out a technological thing in them.

Actually, the defiance with respect to technical matters usu-
ally crystallizes in people’s minds as mysticism. Pirsig explains
it the following striking way:

124

2.8. TECHNOLOGY AND SOCIETY

The ”it” is a kind of force that gives rise to technol-
ogy, something undefined, but inhuman, mechanical,
lifeless, a blind monster, a death force. Something
hideous they are running from but know they can
never escape.

Only ”peculiar” people accept to deal with ”the beast”, or
are even fascinated by it. Or maybe it’s the bunch of others
which is ”peculiar”, by believing there is a beast in lifeless ob-
jects? Maybe Pirsig’s first reaction was the correct one?

Among the counter culture mob, a sub culture existed within
the hippy community, and the concept of personal computer, for
instance, owes a lot to the technophile hippies, who wanted to
be independent from the established mainframes (read IBM!).
I have personally known a hippy, in the seventies, who used
to return to teaching Fortran for a few days, when money was
missing to run his house.

Now, of course, the hippy movement was a very strong one,
which deeply and durably impacted our world, even if most of
its dreams were naive, and irrealistic. Today, it sounds a little
bit odd to think that software evolutions are deeply influenced
by the evolution of thought. Well, it may sound odd, but it is
still true, and these influences should be considered with much
care, as software development is a very delicate matter, in which
there is not a lot of space for approximation.

Our society has evolved since the early ’70s. In the early ’70s,
the goal was to offer access to affordable goods to a majority of
people. Quality was not the number one preoccupation. Now
people are more preoccupied by their health, their weight. Or-
ganic food, pure products are what the market expects. ”Pure”
and ”Thin” are the words that sell, and their momentum are
very powerful. ”Rich”, ”creamy” are negative, while ”light”,
”pure”, ”no additives” are considered valuable properties. Con-
sider haute couture top models, they do not look like Rubens or
Renoir feminine ideals, anorexic is an adjective that applies bet-
ter to them than healthy. Less and simple is now better. So it is,
in the software business. There even used to be a company, sell-

125

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

ing software quality assurance tools called ”Pure Software”, now
part of IBM, with products such as ”Purify” and ”PureLink”.

Let us take modern examples to illustrate non technical in-
fluence on technology: XML, Java and Graphical User Interfaces
(GUI) development.

2.8.1 XML, and the quest for purity

In the beginning God created the heavens and the earth. In the
recent history of software, the origin of data formatting is SGML.
SGML stands for ”Standard Generalized Markup Language”. It
was invented by Charles F. Goldfarb in 1974, following ”GML”,
with the goal to express a document in a structured manner.
SGML provides a notation, which allows to manipulate a doc-
ument as a composition of recursive sub-structures. After all,
we all know that a book is divided in chapters, sections, subsec-
tions, paragraphs etc. This structure is conceptually indepen-
dent from the way it is presented to the reader. SGML intended
to allow this separation, splitting away structure and presenta-
tion. Also, it proposed a way to describe a priori the structure
of a document, as a kind of grammar, under the form of a DTD
(for Document Type Definition). A given text, expressed using
SGML could then be validated against the DTD to check if it
obeyed the generic structure of the class of documents it was
supposed to belong to.

Goldfarb wrote in 1971:

The principle of separating document description from
application function makes it possible to describe
the attributes common to all documents of the same
type. ... [The] availability of such ’type descrip-
tions’ could add new function to the text processing
system. Programs could supply markup for an in-
complete document, or interactively prompt a user
in the entry of a document by displaying the markup.
A generalized markup language then, would permit
full information about a document to be preserved,

126

2.8. TECHNOLOGY AND SOCIETY

regardless of the way the document is used or repre-
sented.

SGML is an International Standard (ISO 8879) language.
Its most famous sequel is running on most of the workstations
in the world, it is HTML, and it is the base for most of the
pages stored on Internet. HTML derived notably from SGML.
It uses the same markup principles, but mixes a great deal of
presentation information. At the time HTML was invented, the
problem was to roll out Internet, and many concrete concerns
existed. The initial wish to have the structure, and only the
structure, of a document described in HTML, was negligible.

Needs have evolved, and the requirement to structure infor-
mation has extended from documents to messages exchanged
by computers on local area network, but also across the planet.
SGML has been considered as a good base to build this. One
of its other sequels is XML, and its purpose is to allow these
exchanges.

XML is a ”Pure SGML”. It is 100% pure application data.
It deviated from HTML, by firming up the structuring nature
of SGML, and prohibiting any cosmetics which could be mixed
up with the information.

Excerpt from a comment on the XMLEdge 2001 conference:

Goldfarb’s vision for XML is pure and based on free-
dom, not proprietary solutions.

There is a book called ”Pure XML”, by Aaron P. Rorstrom
and George Doss [44]. This book belongs to a entire series, pub-
lished by Sams, which contains also the following: ”Pure C#”,
”Pure Java 2”, ”Pure C Programming”, ”Pure C++ Program-
ming”, ”Pure Visual Basic”, ”Pure JavaScript”, etc.

Anthony Channing, in August 2000, stated on the xml-dev
mailing list:

XML will become devalued and meaningless (although
not useless) unless everyone sticks to pure XML. If

127

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

the goal of XML is to improve the intercommunica-
tion of products within the computing world then it
will only work if the rules are followed.

Quotes are numerous, this document would not be sufficient.
”Pure XML” reaches on google 20,800 hits, while ”pure HTML”
(a contradiction in itself, as we saw) reaches 98,000 hits, and
”pure SGML” reaches a mere... 290! The ratio of ”pure SGML”
with respect to ”SGML” alone and of ”pure XML” with respect
to ”XML” alone are in the 1 to 5 order of magnitude. Clearly
”purity” was not a selling concept at the time of SGML...

This is in perfect philosophical synch with the reasons driv-
ing us to do our shopping at the supermarket... Pure food did
not sell in the seventies, it had to be ”rich”... How strange.

2.8.2 Java

Java is a programming language which, during the recents years,
benefitted most from the ”thin” momentum. The comments
below do not constitute a criticism of Java, but rather intend
to show how the most improbable technology, very low level
technology, such as a programming language, can be influenced
by society, and the evolution of mentalities.

When Java started to be promoted by Sun Microsystems, it
was sold as a light technology to produce thin graphical user in-
terfaces. It was presented as a reaction to former programming
languages, like C++. C++ is a technology for professionals,
who want to control very precisely what they do, while benefit-
ting from modern software engineering practices such as object-
oriented programming. It is, like its ancestor, C, used by a vari-
ety of respectable professional software corporations for building
very sound solutions. The Java compiler, and the engine which
executes it, the Java virtual machine, are, by the way, both writ-
ten in C, not in Java. Oracle, the reputed relational database
editor, push their customers very hard to use Java, and claim its
universality, and efficiency. I personally experienced asking top
management at Oracle, in California, when they would use Java
as the technology for the core of their own flagship relational

128

2.8. TECHNOLOGY AND SOCIETY

database product. It was a nasty question, and the reaction of
my interlocutor was no surprise. The person opened her large
eyes wide full of incredulity, for such a peculiar question. Of
course, the answer was a loud and clear: never. Oracle, for their
own needs, for the core of their technology, prefer the ”rich and
creamy” C and C++...

You have to realize that when you use a programming lan-
guage, nobody forces you to use everything. You can use any
kind of subset you want. It is just like English or French, differ-
ent people use a different subset. Few, if any, master the entirety
of vocabulary and grammar. Having more constructs is not like
carrying a heavier rucksack. You can simply ignore what you do
not understand or what you do not master.

It is exactly the same in the world of programming languages.
Nobody is forced to use all the constructs a programming lan-
guage proposes. Even within the C++ community of develop-
ers, many of them (all?) use a subset. How then can ”less” be
”better”? By definition, it can only be worse.

Trying to prohibit people from using a given construct, be-
cause you do not use it yourself, is highly worrying. Doesn’t it
come close to fanatism? Well, this fanatism is pretty common
in the peculiar world of software development. Every software
developer has their own stories in memory. Some corporations
prohibit double pointers in C, and allow only simple ones, be-
cause double pointers are ”too complicated”... Some companies
prohibit multiple inheritance in C++, because it is supposedly a
very silly construct. Actually the people doing this clearly never
spent time to understand what it is, and the subtleties around
it. To some extent, the message ”less is better” pleases peo-
ple who have a hard time understanding too abstract matters.
It goes on the same direction as anti-intellectualism. The bad
news is that software development is a purely abstract activity,
and the people who are repelled by it are already surrounded by
abstraction.

As a matter of fact different technologies are meant for differ-
ent people and different purposes. Java ”surfed” so much on the
”light” wave, explaining that simpler was better and that other

129

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

programming languages did not deserve so much complexity,
that some level of fanatism arose within the Java community.
As an example, Java, up to its 1.4 version, did not contain any
means to describe genericity. Genericity is one of the interesting,
but very difficult tools that were invented for modern software
engineering. The simple fact that Java did not embed any way
to specify generic constructs, was considered by its users as an
asset. Less is better. Java did not require this, as its model did
not require it. I’ve heard the most brilliant people explain that
no kind of genericity was necessary in Java. Genericity (in a
lighter form than the one proposed in C++...) appeared in Java
v1.5, much to the puzzlement of those who predicted it would
never be the case, and for whom Java was already perfect.

Java is an interesting example, also because it surfed on the
”pure” word as well. Java evangelists — interesting term in itself
— have succeeded in imposing the expression ”100% pure Java”,
which borrows directly from its coffeinated homonym. ”Better”
started meaning ”with more Java”, and if possible, only with
Java. And people were, and are still finding rational technical
explanations for this. They usually forget to realize the obvious
fact that Java relies on an operating system, Windows or Unix
for instance, which is not, itself, written in Java, so 100% Java
is meaningless. Interestingly enough, a very successful graphical
toolkit, SWT, is attracting more and more attention from de-
velopers, because it is clearly faster than its predecessor, Swing.
Swing is supposed to be 100% Java, while SWT contains only a
”thin” layer of Java typically on top of C or C++ code...

How come the obvious is not obvious to the most intellectual
people?

Another claim of Java evangelists, which took really well
among Java users, is the absence of ”pointer” in Java. Pointers
are as old as information technology, as old as Alan Turing’s
works. Most, if not all Java developers are propagating the
same motto ”Java does not have any pointers”. How come Java
allows to set a reference to an object to the null value, accepts
the comparison of a reference to null, and has an exception
called ”NullPointerException”, that the same developers have

130

2.8. TECHNOLOGY AND SOCIETY

seen numerous times? Null Pointer Exception!!! At the time
of writing, google returns 8,760 hits on the search of java ”no
pointers”, and 4,980 for java ”no pointer”... 243,000 pages refer
to ”NullPointerException”...

The thing is that Java, semantically, not only has pointers,
but it has only pointers. It is lacking a reference mechanism
which guarantees that the reference is never null. But it indeed
has no pointer arithmetics, and the superficial syntactic notation
is not the usual pointer notation.

The striking ability of modern marketing to use the same
techniques as mental manipulation, and build on the aspirations
and trends of a society has created such a situation where the
smartest minds are easily driven to the most obvious errors.
Software developers are not isolated from the evolutions of the
world, and are influenced by fashion too.

2.8.3 User interface development

During the last decade, the ”thin” adjective, has also been a key
selling point for graphical user interfaces technologies (GUI). Old
practices were ”heavy” while new ones, particularly those capa-
ble of running within a Web browser, were considered ”thin”.

In the world of graphical user interfaces, the yin has also its
yang. ”Thin” can also be seen as ”poor” and ”heavy” can also
be seen as ”rich”. Of course, ”heavy” does not sell, but often,
it is what is required. Not always, of course, but often though.
Let us clarify.

With the advent of Internet, a very popular way to interact
with information has spread down to everybody’s houses: the
web browser. Naturally, it has been interpreted as the universal
mean to access information. Suddenly the web browser became
the universal tool not only to access Internet, but also to produce
all graphical user interfaces. Of course, there would be a few
negligible pieces of software like a text editor, or a spreadsheet,
which would have real specific requirements, which would make a
web browser inadequate for them. But all the rest would rapidly
be replaced by web browsers. Every GUI in the world would

131

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

become ”thin”, and the world would be immediately better.
Well, let us come back to the root of things. Let us look at

the ”details”. If we project ourselves back to before the advent
of the web browser, and if we try to list the requirements the
web browser would have to obey, it would be something like:

The users of the system are infrequent users, who are surfing
on Internet, and switch from site to site, without usually spend-
ing much time on one of them. In cases when a user comes back
regularly, the site would change at a high pace, and it would
be just as if the user would switch from one site to another
one. A given user would therefore not like to spend much time
learning the system, and would prefer a stereotyped access to in-
formation, which would favor the absence of learning curve over
ergonomy. These two are contradictory, because a better ergon-
omy involves more sophisticated interactions with the software,
and interaction semantics require learning these semantics.

In a nutshell, a web browser is meant for an infrequent user,
who does not want to learn anything beyond what he can learn
by using the web browser during a few minutes.

A nice consequence of this is that a web browser can display
pages which have been built without really using a programming
language. This is thin thin thin.

All this translates into a very stereotyped ergonomy, which
differs greatly from classical user interfaces. It also means that
very intense users, who spend a meaningful part of their working
day interacting with the GUI, are unlikely to be efficient, and
are likely to be quickly upset by the tool.

In spite of the restrictive statement on the scope of use of a
web browser, a number of very legitimate uses outside of Internet
scope have arisen. As a matter of fact, the word ”Internet” has
been intentionally removed from the specification above, because
the web browser will still be a very serious candidate as a GUI
solution for infrequent users. ”Thin” is well adapted to users
who can cope with a ”poor” experience.

The passion for universal solutions in IT is such that very
few people identified the true constraints which gave birth to the
web browser that we all know now. The frenzy around exploiting

132

2.8. TECHNOLOGY AND SOCIETY

web browser even for intense use has been truly incredible. What
was the result?

The fact is that users are always right. No matter what you
try to impose upon them, if they have requirements, they will
obtain solutions to their problems, or they will move away. In-
tense users accept to spend some time in training, if this means
getting a better productivity or a more comfortable work envi-
ronment. Therefore, in the ”intense” world of users, ergonomy
prevails over reduced training. A ”poor” experience is simply
unacceptable, and a ”rich” environment is mandatory.

What happened? Rich features had to be built on top of
web browsers. To some extent, this has been true even within
Internet world. Some web sites do not change so frequently, and
to get fancier web sites, some solutions have had to be found
in order to compensate the deficiencies of the ”poor”/”thin”
interfacing method a web browser proposes.

Embedding rich features within a web browser is difficult,
and raises software engineering, network efficiency, and security
problems. The vast majority of the solutions put in place in-
volve using a programming language: JavaScript. The gradual
implementation of more and more sophisticated interactions has
often led to situations where enormous amounts of JavaScript
code were developed. Unfortunately, JavaScript has hardly ben-
efitted from any recent progress in software engineering, and
hoards of developers are painfully experiencing software devel-
opment with stone age tools.

At the end, gradually, the result is a rather poor interaction,
with costly developments, and user interfaces which end up being
extremely fat and slow. The guy who was supposed to be thin is
now obese. This shows the risk of becoming a victim of fashion...

Some of the software tools we are using every day exist in
two versions, light and rich, and nobody is surprised to have
access to both. Among them are mail tools. If you process your
mail at a reasonable pace, you certainly prefer to use your pre-
ferred Microsoft Outlook or IBM Lotus Notes solution. If you
are on the road, or processing mail only sporadically, hotmail
or google mail are, for instance, very interesting alternatives. If

133

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

somebody tried to force you to process your office mail using
hotmail or google for hours a day, you would certainly become
crazy... Surprisingly enough, that is exactly what lots of people
have done in their own sphere of activity. This shows the weak-
nesses that anybody can have, even intellectuals, when they are
under social and in particular, fashion, pressure.

More generally, marketing in technology borrows many of
its techniques from sects, and modern technology marketers are
even called ”evangelists”. The etymology of ”evangelist” is bib-
lical, and is a clear reference to religion. To sell technology bet-
ter, it needs to be turned into a religion. If you attended some
of the recent technology conferences, you may have noticed the
very striking use of words like ”community”, ”together”, and re-
peated instructions like ”stand up”, ”sit down”, which are clas-
sical techniques to instrumentalize people. Similarly, marketing
of technology is turning more and more towards populism, and
selling mottos that the mass expect. Unfortunately, as explained
in the former chapter, the successful subset of the IT popula-
tion is only a very limited part of it, and populism can only be
detrimental to people who become victim of it, as it does not
show them the difficult path, while directing them towards the
sliding way down to the abyss.

We must always have in mind Douglas Adams’ joke:

The Encyclopaedia Galactica defines a robot as a
mechanical apparatus designed to do the work of a
man. The Marketing Division of the Sirius Cyber-
netics Corporation defines a robot as ’Your plastic
pal who’s fun to be with’.

2.9 Elite as a bunch of marginals

For those who have meaningfully been exposed to developers,
comparing some of the very best ones to marginals would seem
very accurate. Being part of an ”elite” and being a ”marginal”,
if you take a neutral acceptation of ”marginal”, can sometimes
be considered as synonym. Really brilliant people are scarce,

134

2.9. ELITE AS A BUNCH OF MARGINALS

and their group constitutes only a margin of the population. As
a matter of fact, the negative side of the word ”marginal” applies
to many members of this elite as well. Why so?

Developing requires a great deal of concentration, remember
it is mostly an intellectual activity. The level of concentration
reached by very talented developers brings them to a state that
could be qualified as ”withdrawal”. Individuals who can reach
this state are often never able to completely leave it! Also, even
if some people would be capable of doing so, the state of with-
drawal required is so scary to them, that they would not be
willing to enter it. Douglas Adams, in the radio series of The
Hitchhiker’s Guide to the Galaxy, the secondary phase, ”fit he
ninth & fit the tenth”, volume 6, track 14 says:

It is often said that a disproportionate obsession with
purely academic or abstract matters indicates a re-
treat from the problems of real life. However, most
of the people engaged in such matters say that this
attitude is based on three things: ignorance, stupid-
ity and... nothing else.

Indeed, many developers — but not all of them — live in
some kind of retreat from real life. What can I give as an example
of that? Well, for instance the usual level of body hygiene we
are all used to, as a consensus of today’s life. This level of
hygiene is sometimes not shared by some developers, and they
can reach a state when they are so ”withdrawn” that a pungent
odor emanates from them. There is a famous story, from the old
times, on Richard Greenblatt. Levy, in [32] recalls:

Some hackers recall that one of the things Green-
blatt’s hacking precluded was regular bathing, and
the result was a powerful odor. The joke around the
AI lab was that there was a new scientific olfactory
measure called a milliblatt. One or two milliblatts
was extremely powerful, and one full blatt was just
about inconceivable. To decrease the milliblatts, the
story goes, hackers maneuvered Greenblatt to a place

135

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

in the hallway of Building 20 where there was an
emergency shower for cases of accidental exposure
to chemicals, and let it rip.

As we already said, withdrawal from reality is not always
a choice, not always a consequence of this very peculiar activ-
ity which is software development. Often, the natural wish to
withdraw from reality is the powerful incentive to move to the
development world. Withdrawal is not the consequence, but the
cause. Levy, on this subject, says:

[. . .] for one thing, many of the hackers were loners
to begin with, socially uncomfortable. It was the pre-
dictability and controllability of a computer system
— as opposed to the hopelessly random problems in
a human relationship — which made hacking partic-
ularly attractive.

The wish for withdrawal is very close to mental illness. The
section on Richard Stallman gives ample evidence on that. The
ability to oscillate between madness and genius is a key capa-
bility to become a very bright developer. Douglas Adams, in
H2G2 has a word on this:

The border between madness and genius is very nar-
row.

2.10 Silence and intellectual work

In the introduction to this document, the case of the variations
of productivity related to office space layout was reported. To-
day, there are still many corporations where it has not been
understood that software development is an intellectual activ-
ity, and where it is somehow considered as manufacturing. As a
consequence, they organize software production through Adam
Smith’s division of labor principle, and design their offices as if
software production was something like mass production of tex-
tile goods. It is extremely common to see that offices are open

136

2.10. SILENCE AND INTELLECTUAL WORK

space, and people are operating their sewing machine — sorry,
computer — to perform their daily duty.

If you admit that software development is intellectual, you
have to conclude that, being intellectual, it requires an envi-
ronment which is favorable to concentration. Tom DeMarco
and Timothy Lister in ”Peopleware — Productive Projects and
Teams” [13] make an extensive analysis of what psychologists
call the state of flow , which is precisely the concentration we
are talking about. This state can be reached after a period of
15 minutes of quietness. Any disruption, even small, destroys
15 minutes to return to the state of flow.

McConnell [34] calls flow-friendly offices ”Thinking-Oriented
Office Space”. He reminds that studies show that ”productivity
levels of developers who work in private, quiet, one or two person
offices can be as much as 2.5 times as great as the productivity
levels of developers who work on open work bays or cubicles”.
Among the scarce studies on the relationship between office lay-
out and developers’ productivity, we find the IBM Santa Teresa
study [35]. This is what an architect exemplary work can be.
It attempts to define what is the most adapted office layout for
the specific task of software development.

Robert Pirsig, in ZAMM [39], follows the same track. He
does not talk about software development, he takes motorcycle
maintenance as an examplary case. And he wonders why some,
if not most, mechanics are so bad. Eventually, he finds the
reason:

The radio was a clue. You can’t really think hard
about what you’re doing and listen to the radio at the
same time. Maybe they didn’t see their job as having
anything to do with hard thought, just wrench twid-
dling. If you can twiddle wrenches while listening to
the radio that’s more enjoyable.

And read this:

An untrained observer will see only physical labor
and often get the idea that physical labor is mainly

137

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

what the mechanic does. Actually the physical labor
is the smallest and easiest part of what the mechanic
does. By far the greatest part of his work is careful
observation and precise thinking. That is why me-
chanics sometimes seem so taciturn and withdrawn
when performing tests. They don’t like it when you
talk to them because they are concentrating on men-
tal images, hierarchies, and not really looking at you
or the physical motorcycle at all. They are using
the experiment as part of a program to expand their
hierarchy of knowledge of the faulty motorcycle and
compare it to the correct hierarchy in their mind.
They are looking at underlying form.

This means that software developers who constantly listen
to music while performing their work are not really, genuinely,
completely, dedicated to it, and just like for motorcycle mainte-
nance, will only be capable of performing lower grade work.

Development requires a sustained level of concentration, not
only during minutes, but during hours. McConnell [34] compares
developers being constantly interrupted to the situation of Al-
bert Einstein receiving frequent calls from his manager telling
him ”Albert, we need that theory of relativity now ! Hurry up!”.
Beyond the joke, we can find lots of references to the relationship
between peaceful environments, concentration and intellectual
work or activities:

Regularly, Bill Gates, with a bunch of other Microsoft em-
ployees, leaves the office, and makes ”retreats”, simply because
this is favorable to more accurate reflection.

The good Edgar Allan Poe [40], in ”The Purloined Letter”
[40], goes even further, and recommends not only shutting down
noise, but also light, and makes his hero, the marvelous puzzle
resolver Dupin say:

”If it is any point requiring reflection,” observed Dupin,
as he forebore to enkindle the wick. ”we shall exam-
ine it to better purpose in the dark.”

138

2.10. SILENCE AND INTELLECTUAL WORK

While this is probably a little bit radical — Poe was pretty
extreme —, it means that the brain’s attention should be focused
on its duty, and not be entertained at the same time, by other
stimuli.

Ralph Waldo Emerson in ”The American Scholar” (1837)
[16] opposes to the result of parcellized labor inherited from
Adam Smith:

In silence, in steadiness, in severe abstraction, let
him hold by himself

Very serious scientific studies have been conducted on the
relationship between noise and inability to learn. For instance,
the BBC reported on 2nd of June 2005:

A team from Barts and the London NHS Trust looked
at data on more than 2,800 children living near Heathrow
and other airports in Spain and the Netherlands.

The Lancet study found each five decibel increase in
noise level was linked to children being up to two
months behind in their reading age.

A US expert said the study supported previous re-
search findings.

The children, all aged nine or 10, attended schools
near to London’s Heathrow Airport, Schiphol in the
Netherlands and Barajas in Spain.

[. . .]

Reading age was delayed by up to two months per
five decibel increase in noise levels in the UK chil-
dren studied, who attended schools in the boroughs
of Hounslow, Hillingdon and Slough, and up to one
month in the Dutch children.

[. . .]

This translates to a delay of up to eight months in a
child’s expected reading age.

139

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

[. . .]

[Professor Stephen Stansfeld] highlighted one study
which looked at children living near to the old Mu-
nich airport in Germany, before and after it was
closed down.

”Children attending schools near the airport improved
their reading scores and cognitive memory perfor-
mance as the airport shut down, while children going
to school near the new airport experienced a decline
in testing scores.”

The inability to concentrate seems related to distractions,
which disrupt the thinking process. This is shown by another
study, carried out by TNS Research and commissioned by Hewlett
Packard. CNN reports:

The survey of 1,100 Britons showed:

• Almost two out three people check their elec-
tronic messages out of office hours and when on
holiday

• Half of all workers respond to an e-mail within
60 minutes of receiving one

• One in five will break off from a business or
social engagement to respond to a message.

• Nine out of 10 people thought colleagues who
answered messages during face-to-face meetings
were rude, while three out of 10 believed it was
not only acceptable, but a sign of diligence and
efficiency.

But the mental impact of trying to balance a steady
inflow of messages with getting on with normal work
took its toll, the UK’s Press Association reported.

In 80 clinical trials, Dr. Glenn Wilson, a psychiatrist
at King’s College London University, monitored the
IQ of workers throughout the day.

140

2.10. SILENCE AND INTELLECTUAL WORK

He found the IQ of those who tried to juggle mes-
sages and work fell by 10 points — the equivalent to
missing a whole night’s sleep and more than double
the 4-point fall seen after smoking marijuana.

This is probably why Donald Knuth never answers e-mail
in real time anymore, and responds through snail mail. In an
interview given to Computer Literacy Bookshop Inc., on the 7th

of December 1993, he says:

I spent fifteen years using electronic mail on the
ARPANET and the Internet. Then, in January 1990,
I stopped, because it was taking up too much of
my time to sift through garbage. I don’t have an
email address. People trying to write me unsolicited
email messages get a polite note saying ”Professor
Knuth has discontinued reading electronic mail; you
can write to him at such and such an address.”

It’s impossible to shut email off! You send a message
to somebody, and they send it back saying ”Thank
you”, and you say ”OK, thanks for thanking me...”

Email is wonderful for some people, absolutely neces-
sary for their job, and they can do their work better.
I like to say that for people whose role is to be on top
of things, electronic mail is great. But my role is to
be on the bottom of things. I look at ideas and think
about them carefully and try to write them up... I
move slowly through things that people have done
and try to organize the material. But I don’t know
what is happening this month.

E-mail is not the only culprit, telephones have been finger-
pointed too because they prevent being on the bottom of things.

We could cover pages with references to silence and brain
operation. Meditation, for instance, is an example of brain op-
eration that is usually associated with silence. This is true for
many religions, which have often pushed for vows of silence.

Let us finish with Gandhi’s words:

141

CHAPTER 2. PECULIAR PEOPLE FOR A PECULIAR
WORLD

It has often occurred to me that a seeker after truth
has to be silent. I know the wonderful efficacy of
silence.

and:

The virtues and qualities of silence are often lost in
the culture of ceaseless noise, loud advertising and
our neighbours and friends speaking senselessly to
tranquilise their own minds.

2.11 Conclusion

At the end of this chapter, it is important to go beyond the
funny side of the biographies and stories which were presented.
The goal of this chapter was not to let the reader believe that
developers are freaks, and that they are affected by all possible
mental diseases. To say the truth, I must admit that a few of
them indeed are freaks or mentally sick, or both of them, but the
vast majority are perfectly sane, and also capable of combining
very strong concentration and creative abilities. The word ”ge-
nius” is often quite deserved. Diving into their daily job, into
the abstraction they are used to, is unpleasant to many people,
if not dangerous. This is actually very comparable to deep sea
diving. Pirsig is talking about his former personality, that was
cured through electroshocks, Phaedrus. Being capable of div-
ing without becoming Phaedrus, is an admirable achievement.
Being capable of keeping the holistic view of problems, which
is required by the most efficient work organization — project
division —, and taking care of the implacable utterly fine de-
tails computing requires stretches one’s brain to a point very
few people are capable of reaching.

Making use of genius is what software production requires.
This cannot be done naively.

142

Bibliography

[1] Ivan Aaen, Peter Bøtcher, and Lars Mathiassen.
The software factory: Contributions and illusions. pages
407,433, Oslo, 1997. Proceedings of the Twentieth Informa-
tion Systems Research Seminar in Scandinavia.

[2] A. J. Albrecht. Measuring application development pro-
ductivity. page 83, Monterey, CA, Oct 14-17 1979. IBM Ap-
plications Development Symposium, GUIDE Int and Share
Inc.

[3] Charles Babbage Esq. A. M. On the Economy of Ma-
chinery and Manufactures. Carey & Lea, 1832.

[4] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[5] Barry W. Boehm. Software Engineering Economics.
Prentice Hall, 1981.

[6] Stewart Brand. We owe it all to the hippies. Forget an-
tiwar protests, Woodstock, even long hair. The real legacy
of the sixties generation is the computer revolution. Time
Magazine Domestic, 145(12), Spring 1995.

[7] Frederick P. Brooks. The Mythical Man-Month.
Addison-Wesley, 1975.

[8] Frederick P. Brooks. No Silver Bullet: Essence and Ac-
cidents of Software Engineering. pages 1069–1076, Dublin,
1986. IFIP.

143

BIBLIOGRAPHY

[9] Thomas Capers Jones. Assessment and Control of Soft-
ware Risks. Yourdon Press, 1994.

[10] Alan Cooper and Robert Reimann. About Face 2.0,
The Essentials of Interaction Design. Wiley Publishing,
Inc., 2003.

[11] James O. Coplien. Advanced C++ programming styles
and idioms. Addison-Wesley, 1992.

[12] Michael A. Cusumano. Microsoft Secrets: How the
World’s Most Powerful Software Company Creates Tech-
nology, Shapes Markets, And Manages People. Free Press,
1998.

[13] Tom DeMarco and Timothy Lister. Peopleware —
Productive Projects and Teams. Dorset House Publishing
Co., 1999.

[14] Peter J. Denning and Robert Dunham. The core of
the third-wave professional. Communications of the ACM,
44(11):21–25, November 2001.

[15] Edsger Wybe Dijkstra. The Humble Programmer.
ACM Turing Lecture, 1972.

[16] Ralph Waldo Emerson. The American Scholar. An
Oration delivered before the Phi Beta Kappa Society, at
Harvard, August 31st, 1837.

[17] René-Antoine Ferchault de Réaumur. Mémoires
pour servir l’Histoire des Insectes. Imprimerie Royale,
Paris, 1734.

[18] Gordon E. Forward, Dennis E. Beach, David A.
Gray, and James Campbell Quick. Mentofacturing:
a vision for American industrial excellence. Academy of
Management Executive, 5(3):32, 1991.

[19] Robert L. Glass. Software SOLILOQUIES. Computing
Trends, 1980.

144

BIBLIOGRAPHY

[20] Robert L. Glass. Negative productivity and what to do
about it. IEEE Software, pages 95–96, September/October
2008.

[21] Michael Hammer. Reengineering work: Don’t auto-
mate, obliterate. Harvard Business Review, pages 104–112,
July/August 1990.

[22] Michael Hammer and James A. Champy. Reengineer-
ing the Corporation: A Manifesto for Business Revolution.
Harper Business Books, 1993.

[23] Douglas R. Hofstadter. Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books, 1999.

[24] Richard Hofstadter. Anti-Intellectualism in American
Life. Vintage Books USA, 1966.

[25] Ludvig de Holberg. Nicolai Klimii Iter Subterraneum
Novam Telluris Theoriam Ac Historiam Quintae Monar-
chiae Adhuc Nobis Incognitae Exhibens E Bibliotheca B.
Abelini. J. Preuss, Copenhagen & Leipzig, 1741.

[26] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice Hall, 1988.

[27] Jack Kérouac. On the road. Penguin Books, 1991.

[28] Donald Ervin Knuth. The Art of Computer Program-
ming. Addison-Wesley, 1981.

[29] Donald Ervin Knuth. 3:16 Bible Texts Illuminated. A-R
Editions, 1991.

[30] Donald Ervin Knuth. Computers & Typesetting, Vol-
umes A-E Boxed Set. Addison-Wesley Professional, 2000.

[31] Bill Landreth. Out of the Inner Circle: A Hacker’s
Guide to Computer Security. Microsoft Press, 1985.

[32] Steven Levy. Hackers: Heroes of the Computer Revolu-
tion. Anchor Press/Doubleday, 1984.

145

BIBLIOGRAPHY

[33] Karl Marx. Capital: A Critique of Political Economy.
The Humboldt Publishing Company, 1886.

[34] Steve C. McConnell. Software Project Survival Guide.
Microsoft Press, 1998.

[35] Gerald M. McCue. IBM’s Santa Teresa Laboratory—
Architectural design for program development. IBM Sys-
tems Journal, 17(1), 1978.

[36] Harlan D. Mills. Software Productivity. Dorset House
Publishing Co., 1988.

[37] Kevin D. Mitnick. The Art of Deception: Controlling the
Human Element of Security. Wiley, 2002.

[38] Jean-Louis Peaucelle. Adam Smith et la division du tra-
vail : La naissance d’une idée fausse. L’Harmattan, 2007.

[39] Robert M. Pirsig. Zen and the Art of Motorcycle Main-
tenance: An Inquiry into Values. William Morrow & Co,
first edition, 1974.

[40] Edgar Allan Poe. The Works of Edgar Allan Poe in
four volumes, Vol. I. W. J. Widdleton, 1864.

[41] William Poundstone. How Would You Move Mount
Fuji? Microsoft’s Cult of the Puzzle. Little, Brown and
Company, 2003.

[42] Lutz Prechelt. An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl for a search/string-
processing program. Technical report, Fakultät für Infor-
matik, Universität Karlsruhe, March 2000.

[43] R. Réaumur and A. de Ferchault. Art de l’Epinglier
avec des additions de M. Duhamel du Monceau et des re-
marques extraites des mémoires de M. Perronet, inspecteur
général des Ponts et Chaussées. Paris, Saillant et Nyon,
1761.

146

BIBLIOGRAPHY

[44] Aaron P. Rorstrom and George Doss. Pure XML.
Sams, 2001.

[45] Murray Rothbard. An Austrian Perspective on the His-
tory of Economic Thought. Ludwig Von Mises Institute,
2006.

[46] Oliver Sacks. The man who mistook his wife for a hat
and other clinical tales. Touchstone, 1998.

[47] Alfred P. Sloan. My years with General Motors. Dou-
bleday & Co, 1964.

[48] Adam Smith L. L. D. An Inquiry into the Nature and
Causes of the Wealth of Nations. Printed for Oliver D.
Cooke, Lincoln & Gleason, Printers, 4th edition, 1804.

[49] Alfred Spector and David Gifford. A computer sci-
ence perspective of bridge design. Communications of the
ACM, 29(4):268–283, 1986.

[50] Randall E. Stross. The Microsoft Way: The Real Story
of How the Company Outsmarts Its Competition. Perseus
Books Group, 1997.

[51] Taligent. Taligent’s Guide to Designing Programs, Well-
Mannered Object-Oriented Design in C++. Addison-
Wesley Publishing Company, 1994.

[52] Frederick Winslow Taylor. Shop management. Trans-
actions of the American Society of Mechanical Engineers,
24:1337–1480, 1903.

[53] Frederick Winslow Taylor. The Principles of Scien-
tific Management. Harper & Brothers Publishers, 1911.

[54] David Thielen. Writing exceptional software. Software
Development International, pages 57–59, Winter 1991.

[55] David Thielen. The 12 simple secrets of Microsoft man-
agement. McGraw-Hill, 1999.

147

BIBLIOGRAPHY

[56] Alvin Toffler. Future Shock. Bantam Books, 1970.

[57] Alvin Toffler. The Third Wave. Bantam Books, 1990.

[58] William H. Waddell and William Bodek. Rebirth of
American Industry - A Study of Lean Management. PCS
Press, 2005.

[59] Sam Williams. Free as in Freedom: Richard Stallman’s
Crusade for Free Software. O’Reilly, 2002.

148

Index

Symbols
$2.56 checks, 88
4GL, 113

Numbers
1337, 74
31337, 74

A
Ability, 67
Abstract matters, 55, 76
ADA, 113
Adams, Douglas, 134
Administrative personnel, 69
Advertisements for jobs, 25
Agrarian Age, 20
Airlines, 56
Alan Turing, 121
Albrecht, Allan J., 27
Alexey Stakhanov, 34
Alfred Sloan, 11
Alfred Spector, 64
Algorithm, 21, 84
Altair 8800, 32
Alto, 123
Amadeus, 39, 56
Amazon, 21
America, see United-States
American Scholar, 59, 139
Analyst, 24

Analytical Engine, 20
Analytical skills, 76
Andrews, Dave, 40
Anti-intellectualism, 69, 75, 76
Apple Computer, 123
Apple II, 75
Arago, François, 112
Architect, 24, 53, 58
Architecture, 58
Art

classical, 55
programming, 55

ASCII, 22
Assembly line, 22, 50, 54

manufacturing, 47
software, 47

Assets, 57
Atanasoff, John Vincent, 21
Athanasius Kircher, 112
Automation, 10, 19–21, 25, 46
Autonomy, 61, 63, 69

B
Babbage, Charles, 11, 17, 20
Basic, 32
Beach, Dennis E., 9
Beck, Kent, 51
Bemer Bob, 74
Bemer Robert, 22

149

INDEX

Berry, Clifford, 21
Berry, Gérard, 99
Bézier curves, 86
Bjarne Stroustrup, 122
Blue boxes, 75
Bob Bemer, 22, 74
Books, 73
Boundary

functional, 59
technological, 59

Bounty, 88
Bozo explosion, 70
Brand, Stewart, 22
Brent Schlender, 29
Bridge, 43, 47, 64
Brief, 32
Brooks, Frederick, 11, 53, 54,

58
Budget for books, 73
Bug, 31, 34, 40, 57, 88

tracking, 30
Business processes, 25
Business, exponential growth,

72
Byte Magazine, 40

C
C, 118
C++, 122
Capers Jones, T., 11
Capt’n Crunch, 75
Car rental companies, 56
Career development, 74
Career management, 72
CASE tool, 114
CHAOS research, 64, 65
Chaplin, Charlie, 80

Check, 88
Civil Engineering, 43, 47, 64
COBOL, 113, 122
COCOMO, 27
Code bumming, 28
Collège de France, 99
Commodities Age, 56
Common man ideal, 75
Continuous revolution, 21, 22,

62
Controlled parcellization, 55
Convergent developer, 30
Cost

analysis, 42
equation, 43
of IT, 25

Cotton, John, 75
Counterculture, 22
Craft industry, 17
craft industry, 43
Craftsmanship, 18
Criminal activity, 74
Crow riddle, 77
Cubicle, 10
Customer involvement, 52
Customers, 72
Cyber criminality, 74

D
Database, 59
David Gifford, 64
David Hume, 12
dBase, 32
Decision-making, 56, 69

independent, 55
Delegation, see Autonomy
Delta, Greek character, 87

150

INDEX

DeMarco, Tom, 10, 137
Denning, Peter, 9
Developer, 58, 61, 85

convergent, 30
divergent, 31

Diderot, Denis, 84
Digital computer, 21
Dijkstra, Edsger Wybe, 103, 108,

119
Discontinuity, 21, 62
Divergent developer, 31
Division of labor, 11, 17, 18,

20–22, 25, 49, 59, 61,
67, 79

maximal, 20, 49, 54
minimal, 49, 54, 58, 61, 62

Doctor Dobb’s, 92
Drucker, Peter, 79
DTD, 126
Dunham, Robert, 9

E
Eckert, John Presper, 21
Economy of Machinery andMan-

ufactures, 17
Edsger Wybe Dijkstra, 103, 108,

119
Education system, 76, 78, 103
Eiffel, 122
Eleet, 74
Elite, 69, 74, 75
Elitism, 75
Emerson, RalphWaldo, 59, 139
Engelbart, Douglas, 9, 36
ENIAC, 21
Entropy, 50, 51, 53
Ergonomy, 55

ERP, 114
ESF, 23
Ethical issues, 79, 81
EUREKA, 23
Europe, 76, 77
Excel, 79
Exceptional man, 66, 68
Execution, 69
Exodus, 92
Expertise, 62
Exponential entropy, 54
Exponential growth

reward, 88
Exponential growth of business,

72
Exponential inefficiency, 44
exsequi , 69
Extreme Programming, 51

F
facebook, 33
Ferchault de Réaumur, René-

Antoine, 13
Fermat, Pierre de, 78
Fire-engines, 19
Flow, 137
Formal proof, 88
Forth, 122
FORTRAN, 125
Forward, Gordon E., 9
Fox, Gerard D., 47
François Arago, 112
Function point analysis, 27
Functional boundaries, 59
Functional Division, 59
Functionality, 61
Functionality law, 120

151

INDEX

G
Gardener, 62
Gates, Bill, 32, 44, 71, 138
GDS, 56
Genius, 67, 74
Gifford David, 64
Gifford, David, 43, 47
Glasgow University, 68
Glass, Robert L., 29, 39
Global Distribution Systems, 56
GNU, 102
Goldfarb, Charles F., 126
Graham, Paul, 42
Graphical user interface, 58, 59
Gray, David A., 9
Greek delta glyph, 87
Grey-hound, 67
Guy Kawasaki, 70

H
H2G2, 38
Hack, 71
Hacker, 69, 74, 75
Henri-Louis Duhamel du Mon-

ceau, 13
Hexadecimal dollar, 84
Hippies, 22
Hitchhiker’s Guide to the Galaxy,

38
Hofstadter, Richard, 75
Holberg, Ludvig de, 66
Hollerith, Herman, 20
Homogeneity, 55, 58
Homogeneous solutions, 55
Horizontal division, 59
Hostitility, 68
Hotel chains, 56

HTML, 127
Hume, David, 12

I
IBM, 58, 114, 125, 137
IDE, 114
Ideology, 67
Independent decision-making, 55,

56
Individual discrepancies, 67
Industrial Age, 20–22, 78
Information Age, 9, 11, 20–22,

56, 82
Information transfer, 47, 49, 50
Ingenuity, 20
Inheritance, 106
Inner Circle, 74
Innovation, 28, 47, 50, 75
Intel, 21
Intellectual

activity, 35
production, 45
productivity, 35, 43
services, 78

Interdependence between orga-
nization and quality of
staff, 39, 61

IQ tests, 39

J
Java, 122, 128
Jean-Louis Lebris de Kérouac,

123
Jean-Paul Rigault, 118
Job, 62

advertisements, 25
protection, 68, 70

Job stratification, 12

152

INDEX

Jobs, Steve, 19, 70, 123
Jobs, Steven Paul, 29
Judge in one’s own case, 56

K
Kahn, Philippe, 121
Karlsruhe University, 38
Kawasaki, Guy, 70
Kérouac, Jean-Louis Lebris de,

123
Keyboarder, 24
Kircher, Athanasius, 112
Klim, Nicholas, 66
Knowledge worker, 79
Knuth, Donald, 32
Knuth, Donald Ervin, 38, 40,

55, 57, 68, 83, 84
Komsomolskaya Pravda, 34
Kotok, Alan, 32

L
l33t, 74
Lamport, Leslie, 85
Landreth, Bill, 74
Large scale systems, 49, 59
LATEX, 85
Leader, 69
Least parcellization, 55
Lebensborn, 82
Lectures, 77
Leetspeak, 74
Leetspeek, 74
Levy, Steven, 22, 32, 33, 74
Line of code, 27
Linear cost

manufacturing, 17, 45
software production, 47

Linus Torvalds, 70, 71

Linux, 71
LISP, 113, 118, 122
Lister, Timothy, 10, 137
Lotus, 32

M
Machinery, 18, 20
Macintosh, 123
Maintenance personnel, 24
Man Thinking, 59
Management by objective, 79
Manager’s role, 68, 69
Managerial positions, 72
Mandeville, 12
Manufacturing, 11, 12, 22, 25,

26, 47, 78
exponential cost, 50
linear cost, 17
stereotypical objects, 50

Mark Zuckerberg, 33
Marx, Karl, 11
Mastiff, 67
Mathematics, 35, 76, 78, 86
Mauchly, John William, 21
Maximal division of labor, 20,

54
Mechanical processes, 21
Mechanical progress, 21
Mentofacturing, 61
Merit, 78
Metafont, 32, 86, 88
Methodology, project, 51
Microsoft, 10, 32, 39, 44, 56–

58, 68, 76, 78, 79
Excel, 79

Mills, Harlan, 45
Minimal division of labor, 49,

153

INDEX

54, 58, 61, 62
Minimal parcellization, 61, 69,

70
MIT, 32, 38, 92
MITS, 32
Modern Times, 80
Monceau, Henri-Louis Duhamel

du, 13
Moral issue, 62, 69, 78
Moral philosophy, 68
Moralist, 68
Murray Rothbard, 13
Myhrvold, Nathan, 29
Mythical Man-Month, 11, 58

N
Natural abilities, see Natural

talent
Natural talent, 67, 69
Nazism, 82
Neolithic age, 12
Network, 59
New York Times, The, 34
NeXT Computer, 19, 123
NeXTcube, 19
Nurse, 62

O
Objective-C, 123
Off the shelf software, 57
Off-shore development, 44
Offices

cubicles, 10
individual, 10
regular, 10

Offpeopling, 19
Operator, 24
Opportunities, 62

Oracle, 56, 128, 129
Organization, 39, 45, 69

and quality of personnel, 39,
61

being secondary, 39
inertia, 69

P
PARC, Xerox, 122
Pattern matching, 77
PDP-1, 32
Peculiar, 92

way of thinking, 85
Peter, 92
Peter Drucker, 79
Peters, Chris, 79
Petty, William, 12
Philippe Kahn, 121
Philosopher, 67, 68
Pin-making, 11, 24
Piracy, 74
Plato, 12
Poe, Edgar Allan, 138
Polymorphism, 106
Potua, 67
Poundstone, William, 39
Practical mind, 78
Prechelt, Lutz, 38
Price, 72
Priesthood, 38, 92
Processes, mechanical, 21
Productivity, 10, 28, 29, 42, 45,

60–62, 72
discrepancies, 70, 74
exponential improvement, 54
interpersonal variations, 27,

29

154

INDEX

Professionals, 25
Programmer, 24, 58, 61
Programming language, 59
Project, 49, 70

methodology, 51
Prolog, 113, 122
Proven software, 57
Pulitzer Prize, 75
Punch operator, 24
Puzzles, 39

Q
Quick, James Campbell, 9

R
Ralph Waldo Emerson, 59
Réaumur, René-Antoine Ferchault

de, 13
Reflexivity of software, 21, 24
René-Antoine Ferchault de Réaumur,

13
Republican elitism, 75
Reputation, 57
Resilience of staff, 62
Responsibility, 56, 58
Retention of staff, see Staff re-

tention
Revolution, 18, 21–23, 75, 78,

79
continuous, see Continuous

revolution
Reward, 73
Richard Matthew Stallman, 93
Riding the bull, 69
Rigault, Jean-Paul, 118
River, 85
rms, 93
Robert Bemer, 22, 74

Role of the manager, 68, 69
Rolfinck, Werner, 112
Rothbard, Murray, 13
Rotting branch syndrom, 70

S
Salary, 25–27, 42, 44, 73

variations, 27
Samson, Peter, 32
Santa Teresa study, 137
SAP, 39, 114
Satan, 75
Saunders, Bob, 32
Schlender, Brent, 29
Scientific education, 77
Scientific studies, 76
Scrum, 52
Selection, 43, 61, 68, 78

among hackers, 74
SGML, 126, 127
Shepherd’s dog, 67
Silver bullet, 11, 54
Skill, 55, 62

analytical, 76
combinations, 55

Sloan, Alfred, 11, 26
Smalltalk, 122, 123
Smith, Adam, 10, 17, 18, 20,

24, 45, 46, 49, 54, 66–
68, 79

SNOBOL, 122
Software

assembly line, 44, 47
editor, 56, 57
exponential cost, 50
factory, 22
industry, 76, 79

155

INDEX

linear cost, 49
off the shelf, 57
production-related availabil-

ity, 57
professionals, 25, 43, 68
proven, 57
reflexivity, 21, 24
users, 25

Software Factory, 23
Solution, homogeneous, 55
Spaniel, 67
Specialization, 12
Specialization of staff, see Trade
Specification, 59
Spector Alfred, 64
Spector, Alfred, 43, 47
Splitting rule, 59
Staff

as a capital, 73
retention, 62, 63, 69, 72, 73
specialization, see Trade

Stakhanov, Alexey, 34
Stallman, Richard Matthew, 22,

32
Standish Group, 64, 65
Stanford University, 84
Stansfeld, Stephen, 140
Stephen Stansfeld, 140
Steve Jobs, 19, 70, 123
Stratification of job, 12
Street porter, 67
Stross, Randall, 69
Stroustrup, Bjarne, 40, 122

T
Talent, 67, 72
TAOCP, 84

Taxi driver, 62

Taylor, Frederick Winslow, 11,
17, 24, 26, 42, 55, 60,
66, 68

Taylorism, 81

Technological

affinities, 38

boundaries, 59

culture, 73

Testing, 57

TEX, 32, 57, 85, 88

Texas A&M University, 40

The Lost Steve Jobs Tapes, 29

The New York Times, 34

Theorem proving, 35

Theoretical mind, 78

Thielen, David, 10, 32, 39, 40,
45, 57, 68, 79

Third wave of civilization, 10

Timothy Lister, 137

Titus, 92

Toffler, Alvin, 9, 20

Tom DeMarco, 137

Torvalds, Linus, 70, 71

Trade, 17, 19, 24, 25, 44, 47,
49, 54, 55, 59, 61, 73,
78

Trainers selection, 73

Training, 55

Travel reservations, 56

Turing Award, 100

Turing Machine, 21

Turing, Alan, 20, 21, 100, 121

Typeface, 88

Typesetting, 85

156

INDEX

U
Unemployment, 44, 78
Unit of production, 27, 28
United States, 76, 77
Universal machine, 20
User companies, 25

V
Verbose code, 27
Vertical

Age, 56, 58
division, 59
specific, 56

Von Neumann, John, 21

W
Wagner, Bob, 32
Wealth of Nations, 21, 67, 68
Web designer, 55
Werner Rolfinck, 112
William Petty, 12
Wired Magazine, 33
Woodstock, 22
Wozniak, Steve, 75

X
Xenophon, 12
Xerox, 123
Xerox Alto, 123
Xerox PARC, 122
XML, 126
XMLEdge, 127

Z
Zortech, 32
Zuckerberg, Mark, 33

157

